Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3563, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670969

RESUMEN

Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.


Asunto(s)
Dexametasona , Glucocorticoides , Histona Demetilasas , Músculo Esquelético , Atrofia Muscular , Receptores de Glucocorticoides , Animales , Masculino , Histona Demetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/genética , Glucocorticoides/farmacología , Dexametasona/farmacología , Receptores de Glucocorticoides/metabolismo , Ratones , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/tratamiento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Ratones Endogámicos C57BL , Regulación de la Expresión Génica/efectos de los fármacos
2.
Nucleic Acids Res ; 49(8): 4472-4492, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33836079

RESUMEN

Skeletal muscle is a dynamic tissue the size of which can be remodeled through the concerted actions of various cues. Here, we investigated the skeletal muscle transcriptional program and identified key tissue-specific regulatory genetic elements. Our results show that Myod1 is bound to numerous skeletal muscle enhancers in collaboration with the glucocorticoid receptor (GR) to control gene expression. Remarkably, transcriptional activation controlled by these factors occurs through direct contacts with the promoter region of target genes, via the CpG-bound transcription factor Nrf1, and the formation of Ctcf-anchored chromatin loops, in a myofiber-specific manner. Moreover, we demonstrate that GR negatively controls muscle mass and strength in mice by down-regulating anabolic pathways. Taken together, our data establish Myod1, GR and Nrf1 as key players of muscle-specific enhancer-promoter communication that orchestrate myofiber size regulation.


Asunto(s)
Cromatina/metabolismo , Elementos de Facilitación Genéticos , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Línea Celular , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica/genética , Histonas/genética , Histonas/metabolismo , Masculino , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fuerza Muscular/genética , Músculo Esquelético/fisiología , Proteína MioD/genética , Mioblastos/metabolismo , Factor Nuclear 1 de Respiración/genética , Receptores de Glucocorticoides/genética , Proteínas Recombinantes
3.
J Vis Exp ; (129)2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29155791

RESUMEN

We describe an efficient and reproducible protocol for the preparation of chromatin from adult mouse skeletal muscle, a physically resistant tissue with a high content of structural proteins. Dissected limb muscles from adult mice are physically disrupted by mechanical homogenisation, or a combination of mincing and douncing, in a hypotonic buffer before formaldehyde fixation of the cell lysate. The fixed nuclei are purified by further cycles of mechanical homogenisation or douncing and sequential filtrations to remove cell debris. The purified nuclei can be sonicated immediately or at a later stage after freezing. The chromatin can be efficiently sonicated and is suitable for chromatin immunoprecipitation experiments, as illustrated by the profiles obtained for transcription factors, RNA polymerase II, and covalent histone modifications. The binding events detected using chromatin prepared by this protocol are predominantly those taking place in the muscle fiber nuclei despite the presence of chromatin from other fiber-associated satellite and endothelial cells. This protocol is therefore adapted to study gene regulation in the adult mouse skeletal muscle.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Músculo Esquelético/metabolismo , Animales , Ratones
4.
Am J Physiol Endocrinol Metab ; 313(1): E12-E25, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28351832

RESUMEN

To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined.


Asunto(s)
Envejecimiento/fisiología , Hormonas Esteroides Gonadales/metabolismo , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Peso Corporal/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fatiga Muscular/fisiología , Músculo Esquelético/metabolismo , Factores Sexuales
5.
Muscle Nerve ; 55(2): 254-261, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27312354

RESUMEN

INTRODUCTION: The effect of constitutive inactivation of the gene encoding myostatin on the gain in muscle performance during postnatal growth has not been well characterized. METHODS: We analyzed 2 murine myostatin knockout (KO) models, (i) the Lee model (KOLee ) and (ii) the Grobet model (KOGrobet ), and measured the contraction of tibialis anterior muscle in situ. RESULTS: Absolute maximal isometric force was increased in 6-month-old KOLee and KOGrobet mice, as compared to wild-type mice. Similarly, absolute maximal power was increased in 6-month-old KOLee mice. In contrast, specific maximal force (relative maximal force per unit of muscle mass was decreased in all 6-month-old male and female KO mice, except in 6-month-old female KOGrobet mice, whereas specific maximal power was reduced only in male KOLee mice. CONCLUSIONS: Genetic inactivation of myostatin increases maximal force and power, but in return it reduces muscle quality, particularly in male mice. Muscle Nerve 55: 254-261, 2017.


Asunto(s)
Contracción Muscular/genética , Fuerza Muscular/genética , Músculo Esquelético/fisiología , Enfermedades Musculares/patología , Miostatina/deficiencia , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Enfermedades Musculares/genética , Miostatina/genética , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA