Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 374: 114700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272160

RESUMEN

Wound healing after closed-head injury is a significant medical issue. However, conventional models of focal traumatic brain injury, such as fluid percussion injury and controlled cortical impact, employ mechanical impacts on the exposed cerebral cortex after craniotomy. These animal models are inappropriate for studying gliosis, as craniotomy itself induces gliosis. To address this, we developed a closed-head injury model and named "photo injury", which employs intense light illumination through a thinned-skull cranial window. Our prior work demonstrated that the gliosis of focal cerebral lesion after the photo injury does not encompass artificial gliosis and comprises two distinct reactive astrocyte subpopulations. The reactive astrocytes accumulated in the perilesional recovery area actively proliferate and express Nestin, a neural stem cell marker, while those in distal regions do not exhibit these traits. The present study investigated the role of perilesional reactive astrocytes (PRAs) in wound healing using the ablation of reactive astrocytes by the conditional knockout of Stat3. The extensive and non-selective ablation of reactive astrocytes in Nestin-Cre:Stat3f/f mice resulted in an exacerbation of injury, marked by increased inflammation and BBB disruption. On the other hand, GFAP-CreERT2:Stat3f/f mice exhibited the partial and selective ablation of the PRAs, while their exacerbation of injury was at the same extent as in Nestin-Cre:Stat3f/f mice. The comparison of these two mouse strains indicates that the PRAs are an essential astrocyte component for wound healing after closed-head injury, and their anti-inflammatory and regenerative functions are significantly affected even by incomplete accumulation. In addition, the reporter gene expression in the PRAs by GFAP-CreERT2 indicated a substantial elimination of these cells and an absence of differentiation into other cell types, despite Nestin expression, after wound healing. Thus, the accumulation and subsequent elimination of PRA are proposed as promising diagnostic and therapeutic avenues to bolster wound healing after closed-head injury.


Asunto(s)
Lesiones Encefálicas , Traumatismos Cerrados de la Cabeza , Ratones , Animales , Astrocitos/metabolismo , Nestina/metabolismo , Gliosis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Cicatrización de Heridas , Lesiones Encefálicas/metabolismo , Traumatismos Cerrados de la Cabeza/patología , Inflamación/metabolismo
2.
Genes (Basel) ; 12(8)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34440425

RESUMEN

Despite the World Anti-Doping Agency (WADA) ban on gene doping in the context of advancements in gene therapy, the risk of EPO gene-based doping among athletes is still present. To address this and similar risks, gene-doping tests are being developed in doping control laboratories worldwide. In this regard, the present study was performed with two objectives: to develop a robust gene-doping mouse model with the human EPO gene (hEPO) transferred using recombinant adenovirus (rAdV) as a vector and to develop a detection method to identify gene doping by using this model. The rAdV including the hEPO gene was injected intravenously to transfer the gene to the liver. After injection, the mice showed significantly increased whole-blood red blood cell counts and increased expression of hematopoietic marker genes in the spleen, indicating successful development of the gene-doping model. Next, direct and potentially indirect proof of gene doping were evaluated in whole-blood DNA and RNA by using a quantitative PCR assay and RNA sequencing. Proof of doping could be detected in DNA and RNA samples from one drop of whole blood for approximately a month; furthermore, the overall RNA expression profiles showed significant changes, allowing advanced detection of hEPO gene doping.


Asunto(s)
Doping en los Deportes , Eritropoyetina/genética , Terapia Genética , Vectores Genéticos/genética , Adenoviridae/genética , Animales , Atletas , Eritropoyetina/uso terapéutico , Vectores Genéticos/uso terapéutico , Humanos , Ratones , Ratones Transgénicos , Modelos Animales
3.
Virology ; 561: 17-27, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34130198

RESUMEN

Paramyxovirus matrix (M) proteins are key drivers of virus particle assembly and budding at the plasma membrane. To identify regions important for the M protein function, we generated a series of deletion mutants of the bovine parainfluenza virus type 3 (BPIV3) M protein. We found that M proteins lacking 10 amino acids in the amino-terminal end (ΔN10) or 4 amino acids in the carboxyl-terminal end (ΔC4) did not support M-deficient BPIV3 virion release and M protein-induced virus-like particle (VLP) release. Both ΔN10 and ΔC4 retained M protein-M protein and M protein-nucleocapsid (N) protein interactions. However, neither was transported to the plasma membrane. Our results indicate that both amino- and carboxyl-terminal ends of the BPIV3 M protein are essential for M protein transport to the plasma membrane, where it facilitates virion and VLP release.


Asunto(s)
Virus de la Parainfluenza 3 Bovina/fisiología , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Virión/fisiología , Liberación del Virus , Animales , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas Mutantes/metabolismo , Proteínas de la Nucleocápside/metabolismo , Virus de la Parainfluenza 3 Bovina/química , Transporte de Proteínas , Eliminación de Secuencia , Células Vero , Proteínas de la Matriz Viral/genética
4.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605164

RESUMEN

Local cryotherapy is widely used as a treatment for sports-related skeletal muscle injuries. The molecular mechanisms are unknown. To clarify these mechanisms, we applied one to three 15-min cold stimulations at 4 °C to various cell lines (in vitro), the tibialis anterior (TA) muscle (ex vivo), and mouse limbs (in vivo). In the in vitro assay, cyclic AMP (cAMP) response element binding protein 1 (CREB1) was markedly phosphorylated (p-CREB1), and the CREB-binding protein (CBP) was recruited to p-CREB-1 in response to two or three cold stimulations. In a reporter assay with the cAMP-responsive element, the signals significantly increased after two to three cold stimulations at 4 °C. In the ex vivo study, CREB-targeting genes were significantly upregulated following two or three cold stimulations. The in vivo experiment disclosed that cold stimulation of a mouse limb for 9 days significantly increased mitochondrial DNA copy number and upregulated genes involved in mitochondrial biogenesis. The results suggest that local cryotherapy increases CREB transcription and upregulates CREB-targeting genes, in a manner dependent on cold stimulation frequency and duration. This information will inform further investigations into local cryotherapy as a treatment for sports-related skeletal muscle trauma.


Asunto(s)
Crioterapia/métodos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Masculino , Ratones , Ratones Endogámicos CBA , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fosforilación , Transducción de Señal , Activación Transcripcional
5.
PeerJ ; 8: e8595, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140302

RESUMEN

BACKGROUND: With the rapid progress of genetic engineering and gene therapy methods, the World Anti-Doping Agency has raised concerns regarding gene doping, which is prohibited in sports. However, there is no standard method available for detecting transgenes delivered by injection of naked plasmids. Here, we developed a detection method for detecting transgenes delivered by injection of naked plasmids in a mouse model that mimics gene doping. METHODS: Whole blood from the tail tip and one piece of stool were used as pre-samples of injection. Next, a plasmid vector containing the human erythropoietin (hEPO) gene was injected into mice through intravenous (IV), intraperitoneal (IP), or local muscular (IM) injection. At 1, 2, 3, 6, 12, 24, and 48 h after injection, approximately 50 µL whole blood was collected from the tail tip. One piece of stool was collected at 6, 12, 24, and 48 h. From each sample, total DNA was extracted and transgene fragments were analyzed by Taqman quantitative PCR (qPCR) and SYBR green qPCR. RESULTS: In whole blood DNA samples evaluated by Taqman qPCR, the transgene fragments were detected at all time points in the IP sample and at 1, 2, 3, 6, and 12 h in the IV and IM samples. In the stool-DNA samples, the transgene fragments were detected at 6, 12, 24, and 48 h in the IV and IM samples by Taqman qPCR. In the analysis by SYBR green qPCR, the transgene fragments were detected at some time point in both specimens; however, many non-specific amplicons were detected. CONCLUSIONS: These results indicate that transgene fragments evaluated after each injection method of naked plasmids were detected in whole-blood and stool DNA samples. These findings may facilitate the development of methods for detecting gene doping.

6.
Genes (Basel) ; 10(6)2019 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181711

RESUMEN

With the rapid progress of genetic engineering and gene therapy, the World Anti-Doping Agency has been alerted to gene doping and prohibited its use in sports. However, there is no standard method available yet for the detection of transgenes delivered by recombinant adenoviral (rAdV) vectors. Here, we aim to develop a detection method for transgenes delivered by rAdV vectors in a mouse model that mimics gene doping. These rAdV vectors containing the mCherry gene was delivered in mice through intravenous injection or local muscular injection. After five days, stool and whole blood samples were collected, and total DNA was extracted. As additional experiments, whole blood was also collected from the mouse tail tip until 15 days from injection of the rAdv vector. Transgene fragments from different DNA samples were analyzed using semi-quantitative PCR (sqPCR), quantitative PCR (qPCR), and droplet digital PCR (ddPCR). In the results, transgene fragments could be directly detected from blood cell fraction DNA, plasma cell-free DNA, and stool DNA by qPCR and ddPCR, depending on specimen type and injection methods. We observed that a combination of blood cell fraction DNA and ddPCR was more sensitive than other combinations used in this model. These results could accelerate the development of detection methods for gene doping.


Asunto(s)
Adenoviridae/aislamiento & purificación , Doping en los Deportes , Vectores Genéticos/aislamiento & purificación , Transgenes/genética , Adenoviridae/genética , Animales , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...