RESUMEN
BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.
Asunto(s)
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análisis , Endófitos/química , Endófitos/fisiología , Epichloe/química , Epichloe/fisiología , Ergotaminas/metabolismo , Festuca/microbiología , Festuca/fisiología , Herbivoria , Compuestos Heterocíclicos con 2 Anillos , Alcaloides Indólicos/metabolismo , Lolium/microbiología , Lolium/fisiología , Micotoxinas , Defensa de la Planta contra la Herbivoria , Poaceae/microbiología , Poaceae/metabolismo , SimbiosisRESUMEN
Plants have evolved mechanisms to survive herbivory. One such mechanism is the induction of defences upon attack that can operate intergenerationally. Cool-season grasses (sub-family Pooideae) obtain defences via symbiosis with vertically transmitted fungal endophytes (genus Epichloë) and can also show inducible responses. However, it is unknown whether these herbivore-induced responses can have intergenerational effects. We hypothesized that herbivory by aphids on maternal plants induces the intergenerational accumulation of endophyte-derived defensive alkaloids and resistance intensification in the progeny. We subjected mother plants symbiotic or not with Epichloë occultans, a species known for its production of anti-insect alkaloids known as lolines, to the aphid Rhopalosiphum padi. Then, we evaluated the progeny of these plants in terms of loline alkaloid concentration, resistance level (through herbivore performance), and shoot biomass. Herbivory on mother plants did not increase the concentration of lolines in seeds but it tended to affect loline concentration in progeny plants. There was an overall herbivore-induced intergenerational effect increasing the endophyte-conferred defence and resistance. Symbiotic plants were more resistant to aphids and had higher shoot biomass than their non-symbiotic counterparts. Since maternal herbivory did not affect the loline concentrations in seeds, the greater resistance of the progeny could have resulted from an inherited mechanism of epigenetic regulation. It would be interesting to elucidate the origin of this regulation since it could come from the host or the fungal symbiont. Thus, endophyte-driven differential fitness between symbiotic and non-symbiotic plants might be higher as generations pass on in presence of herbivores.
Asunto(s)
Alcaloides , Áfidos , Epichloe , Animales , Endófitos , Poaceae , Herbivoria , Áfidos/fisiología , Epigénesis Genética , Simbiosis , Alcaloides/farmacologíaRESUMEN
Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.
Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Lolium/fisiología , Ozono , Biomasa , Lolium/efectos de los fármacos , Lolium/microbiología , Ozono/farmacología , Plantones/fisiología , SimbiosisRESUMEN
Plants are challenged by biotic and abiotic stress factors and the incidence of one can increase or decrease resistance to another. These relations can also occur transgenerationally. For instance, progeny plants whose mothers experienced herbivory can be more resistant to herbivores. Certain fungal endophytes that are vertically transmitted endow plants with alkaloids and resistance to herbivores. However, endophyte-symbiotic plants exposed to the oxidative agent ozone became susceptible to aphids. Here, we explored whether this effect persists transgenerationally. We exposed Lolium multiflorum plants with and without fungal endophyte Epichloë occultans to ozone (120 or 0 ppb), and then, challenged the progeny with aphids (Rhopalosiphum padi). The endophyte was the main factor determining the resistance to aphids, but its importance diminished in plants with ozone history. This negative ozone effect on the endophyte-mediated resistance was apparent on aphid individual weights. Phenolic compounds in seeds were increased by the symbiosis and diminished by the ozone. The endophyte effect on phenolics vanished in progeny plants while the negative ozone effect persisted. Independently of ozone, the symbiosis increased the plant biomass (≈24%). Although ozone can diminish the importance of endophyte symbiosis for plant resistance to herbivores, it would be compensated by host growth stimulation.
RESUMEN
Tropospheric ozone is an abiotic stress of increasing importance in the context of global climate change. This greenhouse gas is a potent phytotoxic molecule with demonstrated negative effects on crop yield and natural ecosystems. Recently, oxidative stress has been proposed as a mechanism that could regulate the interaction between cool-season grasses and Epichloë endophytes. We hypothesized that exposure of Lolium multiflorum plants, hosting endophytes to an ozone-polluted environment at different ontogenetic phases, would impact the trans-generational dynamics of the vertically transmitted fungal symbiont. Here, we found that the ozone-induced stress on the mother plants did not affect the endophyte vertical transmission but it impaired the persistence of the fungus in the seed exposed to artificial ageing. Endophyte longevity in seed was reduced by exposure of the mother plant to ozone. Although ozone exposure did not influence either the endophyte mycelial concentration or their compound defences (loline alkaloids), a positive correlation was observed between host fitness and the concentration of endophyte-derived defence compounds. This suggests that fungal defences in grass seeds were not all produced in situ but remobilized from the vegetative tissues. Our study reveals ozone trans-generational effects on the persistence of a beneficial symbiont in a host grass.
Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Epichloe , Lolium/microbiología , Ozono/efectos adversos , Simbiosis , Endófitos/efectos de los fármacos , Endófitos/fisiología , Epichloe/efectos de los fármacos , Epichloe/fisiología , Lolium/efectos de los fármacos , Lolium/fisiología , Semillas/microbiología , Estrés Fisiológico , Simbiosis/efectos de los fármacosRESUMEN
Plant-herbivore interactions are often mediated by plant microorganisms, and the "defensive mutualism" of epichloid fungal endophytes of grasses is an example. These endophytes synthesize bioactive alkaloids that generally have detrimental effects on the performance of insect herbivores, but the underlying mechanisms are not well understood. Our objective was to determine whether changes in the physiology and/or behavior of aphids explain the changes in performance of insects feeding on endophytic plants. We studied the interaction between the aphid Rhopalosiphum padi and the annual ryegrass Lolium multiflorum symbiotic (E+) or not symbiotic (E-) with the fungus Epichloë occultans that can synthesize loline alkaloids. We hypothesized that aphids feeding on E+ plants have higher energetic demands for detoxification of fungal alkaloids, thereby negatively impacting the individual performance, population growth, and structure. Aphids growing on E+ plants had lower values in morphometric and functional variables of individual performance, displayed lower birth rate, smaller population size, and dramatic structural changes. However, aphids exhibited lower values of standard metabolic rate (SMR) on E+ plants, which suggests no high costs of detoxification. Behavioral variables during the first 8 h of feeding showed that aphids did not change the phloem sap ingestion with the presence of fungal endophytes. We hypothesize that aphids may maintain phloem sap ingestion according to their fungal alkaloid tolerance capacity. In other words, when alkaloid concentrations overcome tolerance threshold, ingestion of phloem should decrease, which may explain the observed lower values of SMR in E+ feeding aphids.