Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
São Paulo; s.n; 20240103. 91 p.
Tesis en Portugués | LILACS, BBO - Odontología | ID: biblio-1524343

RESUMEN

Esta tese foi dividida em três partes, sendo que cada uma consistiu estudo independente, com objetivos próprios. Na parte 1, o objetivo foi avaliar a influência do modo de representar a interface osso-OMI (osseointegrada ou não osseointegrada) sobre a previsão do risco de reabsorção óssea peri-implantar. Foram construídos quatro modelos tridimensionais que representaram o OMI inserido em quatro cilindros de osso de densidades crescentes, diferenciados pela espessura do osso cortical (Ct = 0,5; 1,2; 2,0 e 3,0 mm) e pelo módulo de elasticidade do osso trabecular (TE = 0,2; 1,4; 3,0 e 5,5 GPa). Para cada modelo, foram simuladas duas condições de interface osso-OMI: uma que considerava união perfeita entre osso e OMI (osseointegrado) e outra que considerava a possibilidade de movimentos relativos entre eles (não osseointegrado). Uma força horizontal de 2 N foi aplicada na cabeça do OMI, para simular a retração de dentes anteriores. A avaliação do risco de reabsorção óssea peri-implantar foi baseada no critério de falha da deformação principal maior, assumindo um valor crítico de 3.000 strain, tanto para tração quanto para compressão. Os resultados mostraram que, ao simular a interface osso-OMI como perfeitamente unida, o risco de perda de estabilidade do OMI por reabsorção óssea peri-implantar no osso menos denso fica subestimado. Na parte 2, foram novamente representadas as quatro condições de qualidade óssea, mas com modelos que representavam o contorno anatômico dos ossos correspondentes: maxila pouco densa, maxila controle, mandíbula controle e mandíbula muito densa. A AEF foi conduzida para tentar explicar por que os OMIs colocados na maxila apresentam maior taxa de sucesso em relação aos OMI colocados na mandíbula, apesar da melhor qualidade do osso mandibular. Além da força horizontal de 2 N (cenário clínico), foi simulada uma força horizontal de 10 N (condição de sobrecarga) e a interface osso OMI foi simulada como não-osseointegrada em todos os modelos. A avaliação do risco de reabsorção óssea peri-implantar seguiu o mesmo critério da parte 1 e foi também avaliado o risco de falta de estabilidade imediata, baseado no deslocamento intra-ósseo do OMI. Em todos os casos, o pico de deslocamento do OMI ficou muito abaixo do limiar de 50-100 m, o que sugere que a estabilidade primária seria suficiente mesmo no cenário de maxila de baixa densidade sobrecarregada. De acordo com os dados da deformação principal maior, a maxila está mais sujeita a perder sua estabilidade inicial devido à sobrecarga ortodôntica, especialmente na condição de baixa densidade, em que tanto a deformação de tração quanto a de compressão ultrapassaram o limiar de reabsorção óssea patológica. É provável que essa AEF não conseguiu prever o maior risco de falha de OMI em mandíbula de alta densidade porque não simulou as tensões residuais geradas pela inserção do OMI. Portanto, a simulação da inserção do OMI parece essencial para explicar a contradição que motivou esse estudo. Na parte 3, o objetivo foi comparar, através da AEF, o risco de reabsorção radicular inflamatória induzida ortodonticamente (RRIIO) entre duas mecânicas ortodônticas de intrusão (convencional e com mini-implantes), em situações de diferentes níveis de suporte periodontal. Foram construídos quatro modelos de um pré-molar superior inserido na maxila: controle (CTL) e 2, 4 ou 6 mm de perda óssea horizontal (R2, R4 e R6, respectivamente). Uma força de intrusão de 25 cN foi utilizada para as duas mecânicas em estudo. Nos modelos com mini-implante ortodôntico, a força foi dividida entre as faces vestibular e palatina. Nos modelos sem mini-implantes, a força foi aplicada apenas na vestibular. O índice de risco de reabsorção radicular (iRRR) foi calculado dividindo o pico de tensão hidrostática compressiva no ligamento periodontal pela tensão hidrostática dos capilares (4,7 kPa). A mecânica com mini-implante, além de apresentar iRRR sempre menores (CTL 1,2 e 1,4; R2: 1,4 e 1,7; R4: 1,7 e 2,2; R6: 2,4 e 3,2 - para mecânicas com e sem OMI, respectivamente), gerou apenas uma região com tensão hidrostática acima do valor crítico, próxima ao ápice do dente, para todos os modelos. Na mecânica convencional, houve também uma região com tensão hidrostática compressiva acima de 4,7 kPa na região cervical vestibular do modelo com 6 mm de perda óssea horizontal. O uso de mini-implante na intrusão ortodôntica diminuiu o risco de RRIIO em todos os casos simulados e o risco de reabsorção óssea adicional no modelo em que o dente apresentava uma perda óssea horizontal prévia de 6 mm.


Asunto(s)
Resorción Ósea , Análisis de Elementos Finitos
2.
Orthod Craniofac Res ; 26(2): 239-247, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36073609

RESUMEN

INTRODUCTION: The intrusion of posterior teeth had been considered challenging up to the development of orthodontic mini implants. In periodontally compromised teeth, the challenge is even greater, because of the root resorption risk due to periodontal ligament over-compression. Still, the precise strategy to determine the force reduction level remains uncertain. OBJECTIVE: The objective of the study was to determine, by a finite element analysis (FEA), the force reduction needed to avoid root resorption and maintain the efficiency of orthodontic mechanics of periodontally compromised teeth similar to the sound one. METHODS: An anatomical model was constructed representing a premolar inserted into a maxillary bone. Based on the initial model (R0), three bone height loss conditions were simulated (R2 = 2 mm, R4 = 4 mm, and R6 = 6 mm). Two intrusive movements were simulated: pure intrusion (bilateral mini implant) and uncontrolled-tipping intrusion (buccal mini implant). The hydrostatic stress at the periodontal ligament was used to evaluate the risk of root resorption due to over-compression. RESULTS: For bilateral mini implant intrusion, the force had to be decreased by 16%, 32% and 48% for R2, R4 and R6, respectively. For buccal mini implant intrusion, the required reductions were higher (20%, 36% and 56%). A linear relationship between the intrusive force reduction and the alveolar bone height loss was observed in both intrusion mechanics. CONCLUSIONS: According to the FE results, 8% or 9.3% of force reduction for each millimetre of bone height loss is suggested for intrusion with bilateral or buccal mini implant, respectively. The buccal mini implant anchorage must be associated with a supplemental strategy to avoid buccal crown tipping.


Asunto(s)
Implantes Dentales , Métodos de Anclaje en Ortodoncia , Resorción Radicular , Humanos , Análisis de Elementos Finitos , Métodos de Anclaje en Ortodoncia/métodos , Ligamento Periodontal , Técnicas de Movimiento Dental/métodos , Maxilar
3.
São Paulo; s.n; 20220606. 91 p.
Tesis en Portugués | LILACS, BBO - Odontología | ID: biblio-1371385

RESUMEN

Esta tese foi dividida em três partes, sendo que cada uma consistiu estudo independente, com objetivos próprios. Na parte 1, o objetivo foi avaliar a influência do modo de representar a interface osso-OMI (osseointegrada ou não osseointegrada) sobre a previsão do risco de reabsorção óssea peri-implantar. Foram construídos quatro modelos tridimensionais que representaram o OMI inserido em quatro cilindros de osso de densidades crescentes, diferenciados pela espessura do osso cortical (Ct = 0,5; 1,2; 2,0 e 3,0 mm) e pelo módulo de elasticidade do osso trabecular (TE = 0,2; 1,4; 3,0 e 5,5 GPa). Para cada modelo, foram simuladas duas condições de interface osso-OMI: uma que considerava união perfeita entre osso e OMI (osseointegrado) e outra que considerava a possibilidade de movimentos relativos entre eles (não osseointegrado). Uma força horizontal de 2 N foi aplicada na cabeça do OMI, para simular a retração de dentes anteriores. A avaliação do risco de reabsorção óssea peri-implantar foi baseada no critério de falha da deformação principal maior, assumindo um valor crítico de 3.000 strain, tanto para tração quanto para compressão. Os resultados mostraram que, ao simular a interface osso-OMI como perfeitamente unida, o risco de perda de estabilidade do OMI por reabsorção óssea peri-implantar no osso menos denso fica subestimado. Na parte 2, foram novamente representadas as quatro condições de qualidade óssea, mas com modelos que representavam o contorno anatômico dos ossos correspondentes: maxila pouco densa, maxila controle, mandíbula controle e mandíbula muito densa. A AEF foi conduzida para tentar explicar por que os OMIs colocados na maxila apresentam maior taxa de sucesso em relação aos OMI colocados na mandíbula, apesar da melhor qualidade do osso mandibular. Além da força horizontal de 2 N (cenário clínico), foi simulada uma força horizontal de 10 N (condição de sobrecarga) e a interface osso OMI foi simulada como não-osseointegrada em todos os modelos. A avaliação do risco de reabsorção óssea peri-implantar seguiu o mesmo critério da parte 1 e foi também avaliado o risco de falta de estabilidade imediata, baseado no deslocamento intra-ósseo do OMI. Em todos os casos, o pico de deslocamento do OMI ficou muito abaixo do limiar de 50-100 m, o que sugere que a estabilidade primária seria suficiente mesmo no cenário de maxila de baixa densidade sobrecarregada. De acordo com os dados da deformação principal maior, a maxila está mais sujeita a perder sua estabilidade inicial devido à sobrecarga ortodôntica, especialmente na condição de baixa densidade, em que tanto a deformação de tração quanto a de compressão ultrapassaram o limiar de reabsorção óssea patológica. É provável que essa AEF não conseguiu prever o maior risco de falha de OMI em mandíbula de alta densidade porque não simulou as tensões residuais geradas pela inserção do OMI. Portanto, a simulação da inserção do OMI parece essencial para explicar a contradição que motivou esse estudo. Na parte 3, o objetivo foi comparar, através da AEF, o risco de reabsorção radicular inflamatória induzida ortodonticamente (RRIIO) entre duas mecânicas ortodônticas de intrusão (convencional e com mini-implantes), em situações de diferentes níveis de suporte periodontal. Foram construídos quatro modelos de um pré-molar superior inserido na maxila: controle (CTL) e 2, 4 ou 6 mm de perda óssea horizontal (R2, R4 e R6, respectivamente). Uma força de intrusão de 25 cN foi utilizada para as duas mecânicas em estudo. Nos modelos com mini-implante ortodôntico, a força foi dividida entre as faces vestibular e palatina. Nos modelos sem mini-implantes, a força foi aplicada apenas na vestibular. O índice de risco de reabsorção radicular (iRRR) foi calculado dividindo o pico de tensão hidrostática compressiva no ligamento periodontal pela tensão hidrostática dos capilares (4,7 kPa). A mecânica com mini-implante, além de apresentar iRRR sempre menores (CTL 1,2 e 1,4; R2: 1,4 e 1,7; R4: 1,7 e 2,2; R6: 2,4 e 3,2 - para mecânicas com e sem OMI, respectivamente), gerou apenas uma região com tensão hidrostática acima do valor crítico, próxima ao ápice do dente, para todos os modelos. Na mecânica convencional, houve também uma região com tensão hidrostática compressiva acima de 4,7 kPa na região cervical vestibular do modelo com 6 mm de perda óssea horizontal. O uso de mini-implante na intrusão ortodôntica diminuiu o risco de RRIIO em todos os casos simulados e o risco de reabsorção óssea adicional no modelo em que o dente apresentava uma perda óssea horizontal prévia de 6 mm.


Asunto(s)
Análisis de Elementos Finitos
4.
Am J Orthod Dentofacial Orthop ; 159(6): 779-789, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33785230

RESUMEN

INTRODUCTION: Orthodontically induced inflammatory root resorption (OIIRR) constitutes an undesirable risk connected to orthodontic treatment. Finite element analysis (FEA) is a powerful tool to study the risk of OIIRR. However, its efficiency in predicting OIIRR depends on the insertion of the correct inputs and the selection of an output coherent with the clinical failure mechanism. METHODS: By combining a systematic review with a 3-dimensional FEA, this article discusses which are the implications of using certain periodontal ligament (PDL) properties (linear and nonlinear models) and failure criteria. Six orthodontic loading regimes were simulated in a maxillary premolar: pure intrusion, buccal tipping, and their combination applied with either a light (25 cN) or a heavy (225 cN) force. Three stress parameters in the PDL were compared: von Mises stress, minimum principal stress, and hydrostatic stress (σH). RESULTS: The comparison between linear and nonlinear models showed notable differences in stress distribution patterns and magnitudes. For the nonlinear PDL, none of the light-force models reached the critical compressive hydrostatic stress of 4.7 kPa, whereas all the heavy-force models reached it. In addition, the regions of critical compressive σH matched with the regions with resorption craters in clinical studies. In linear models, the σH critical value of 4.7 kPa was reached even in the light-force scenario. CONCLUSIONS: Only compressive hydrostatic stress in PDL satisfied the requirements to be used as an FEA indicator of OIIRR. However, the requirements were satisfied only when a nonlinear PDL model was considered.


Asunto(s)
Resorción Radicular , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Ligamento Periodontal , Resorción Radicular/etiología , Estrés Mecánico , Técnicas de Movimiento Dental/efectos adversos
5.
Biomater Investig Dent ; 8(1): 1-9, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33521649

RESUMEN

Purpose: This study aimed to compare the risk of orthodontic mini-implant (OMI) failure between maxilla and mandible. A critical analysis of finite-element studies was used to explain the contradiction of the greatest clinical success for OMIs placed in the maxilla, despite the higher quality bone of mandible. Materials and Methods: Four tridimensional FE models were built, simulating an OMI inserted in a low-dense maxilla, control maxilla, control mandible, and high-dense mandible. A horizontal force was applied to simulate an anterior retraction of 2 N (clinical scenario) and 10 N (overloading condition). The intra-bone OMI displacement and the major principal bone strains were used to evaluate the risk of failure due to insufficient primary stability or peri-implant bone resorption. Results: The OMI displacement was far below the 50-100 µm threshold, suggesting that the primary stability would be sufficient in all models. However, the maxilla was more prone to lose its stability due to overload conditions, especially in the low-dense condition, in which major principal bone strains surpassed the pathologic bone resorption threshold of 3000 µstrain. Conclusions: The differences in orthodontic mini-implant failures cannot be explained by maxilla and mandible bone quality in finite-element analysis that does not incorporate the residual stress due to OMI insertion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...