Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(14): e2308280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38298111

RESUMEN

Despite strides in immunotherapy, glioblastoma multiforme (GBM) remains challenging due to low inherent immunogenicity and suppressive tumor microenvironment. Converting "cold" GBMs to "hot" is crucial for immune activation and improved outcomes. This study comprehensively characterized a therapeutic vaccination strategy for preclinical GBM models. The vaccine consists of Mannan-BAM-anchored irradiated whole tumor cells, Toll-like receptor ligands [lipoteichoic acid (LTA), polyinosinic-polycytidylic acid (Poly (I:C)), and resiquimod (R-848)], and anti-CD40 agonistic antibody (rWTC-MBTA). Intracranial GBM models (GL261, SB28 cells) are used to evaluate the vaccine efficacy. A substantial number of vaccinated mice exhibited complete regression of GBM tumors in a T-cell-dependent manner, with no significant toxicity. Long-term tumor-specific immune memory is confirmed upon tumor rechallenge. In the vaccine-draining lymph nodes of the SB28 model, rWTC-MBTA vaccination triggered a major rise in conventional dendritic cell type 1 (cDC1) 12 h post-treatment, followed by an increase in conventional dendritic cell type 2 (cDC2), monocyte-derived dendritic cell (moDC), and plasmacytoid dendritic cell (pDC) on Day 5 and Day 13. Enhanced cytotoxicity of CD4+ and CD8+ T cells in vaccinated mice is verified in co-culture with tumor cells. Analyses of immunosuppressive signals (T-cell exhaustion, myeloid-derived suppressor cells (MDSC), M2 macrophages) in the GBM microenvironment suggest potential combinations with other immunotherapies for enhanced efficacy. In conclusion, the authors findings demonstrate that rWTC-MBTA induces potent and long-term adaptive immune responses against GBM.


Asunto(s)
Glioblastoma , Vacunas , Ratones , Animales , Glioblastoma/metabolismo , Linfocitos T CD8-positivos , Vacunas/metabolismo , Células Dendríticas , Inmunidad , Microambiente Tumoral
2.
Endocr Rev ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377172

RESUMEN

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues or extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing on PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.

3.
J Exp Clin Cancer Res ; 42(1): 163, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37434263

RESUMEN

BACKGROUND: Autologous tumor cell-based vaccines (ATVs) aim to prevent and treat tumor metastasis by activating patient-specific tumor antigens to induce immune memory. However, their clinical efficacy is limited. Mannan-BAM (MB), a pathogen-associated molecular pattern (PAMP), can coordinate an innate immune response that recognizes and eliminates mannan-BAM-labeled tumor cells. TLR agonists and anti-CD40 antibodies (TA) can enhance the immune response by activating antigen-presenting cells (APCs) to present tumor antigens to the adaptive immune system. In this study, we investigated the efficacy and mechanism of action of rWTC-MBTA, an autologous whole tumor cell vaccine consisting of irradiated tumor cells (rWTC) pulsed with mannan-BAM, TLR agonists, and anti-CD40 antibody (MBTA), in preventing tumor metastasis in multiple animal models. METHODS: The efficacy of the rWTC-MBTA vaccine was evaluated in mice using breast (4T1) and melanoma (B16-F10) tumor models via subcutaneous and intravenous injection of tumor cells to induce metastasis. The vaccine's effect was also assessed in a postoperative breast tumor model (4T1) and tested in autologous and allogeneic syngeneic breast tumor models (4T1 and EMT6). Mechanistic investigations included immunohistochemistry, immunophenotyping analysis, ELISA, tumor-specific cytotoxicity testing, and T-cell depletion experiments. Biochemistry testing and histopathology of major tissues in vaccinated mice were also evaluated for potential systemic toxicity of the vaccine. RESULTS: The rWTC-MBTA vaccine effectively prevented metastasis and inhibited tumor growth in breast tumor and melanoma metastatic animal models. It also prevented tumor metastasis and prolonged survival in the postoperative breast tumor animal model. Cross-vaccination experiments revealed that the rWTC-MBTA vaccine prevented autologous tumor growth, but not allogeneic tumor growth. Mechanistic data demonstrated that the vaccine increased the percentage of antigen-presenting cells, induced effector and central memory cells, and enhanced CD4+ and CD8+ T-cell responses. T-cells obtained from mice that were vaccinated displayed tumor-specific cytotoxicity, as shown by enhanced tumor cell killing in co-culture experiments, accompanied by increased levels of Granzyme B, TNF-α, IFN-γ, and CD107a in T-cells. T-cell depletion experiments showed that the vaccine's antitumor efficacy depended on T-cells, especially CD4+ T-cells. Biochemistry testing and histopathology of major tissues in vaccinated mice revealed negligible systemic toxicity of the vaccine. CONCLUSION: The rWTC-MBTA vaccine demonstrated efficacy in multiple animal models through T-cell mediated cytotoxicity and has potential as a therapeutic option for preventing and treating tumor metastasis with minimal systemic toxicity.


Asunto(s)
Neoplasias de la Mama , Vacunas contra el Cáncer , Melanoma , Animales , Ratones , Humanos , Femenino , Mananos , Memoria Inmunológica , Vacunas contra el Cáncer/uso terapéutico , Antígenos CD40 , Antígenos de Neoplasias , Neoplasias de la Mama/terapia
4.
Front Endocrinol (Lausanne) ; 14: 1030412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342258

RESUMEN

Cancer immunotherapy has shown remarkable clinical progress in recent years. Although age is one of the biggest leading risk factors for cancer development and older adults represent a majority of cancer patients, only a few new cancer immunotherapeutic interventions have been preclinically tested in aged animals. Thus, the lack of preclinical studies focused on age-dependent effect during cancer immunotherapy could lead to different therapeutic outcomes in young and aged animals and future modifications of human clinical trials. Here, we compare the efficacy of previously developed and tested intratumoral immunotherapy, based on the combination of polysaccharide mannan, toll-like receptor ligands, and anti-CD40 antibody (MBTA immunotherapy), in young (6 weeks) and aged (71 weeks) mice bearing experimental pheochromocytoma (PHEO). The presented results point out that despite faster growth of PHEO in aged mice MBTA intratumoral immunotherapy is effective approach without age dependence and could be one of the possible therapeutic interventions to enhance immune response to pheochromocytoma and perhaps other tumor types in aged and young hosts.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Humanos , Animales , Ratones , Anciano , Feocromocitoma/terapia , Inmunoterapia/métodos , Receptores Toll-Like , Antígenos CD40 , Neoplasias de las Glándulas Suprarrenales/terapia
5.
Int Immunopharmacol ; 118: 110150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030115

RESUMEN

Despite constant advances in cancer research, the treatment of pancreatic adenocarcinoma remains extremely challenging. The intratumoral immunotherapy approach that was developed by our research group and was based on a combination of mannan-BAM, TLR ligands, and anti-CD40 antibody (MBTA) showed promising therapeutic effects in various murine tumor models, including a pancreatic adenocarcinoma model (Panc02). However, the efficacy of MBTA therapy in the Panc02 model was negatively correlated with tumor size at the time of therapy initiation. Here, we aimed to further improve the outcome of MBTA therapy in the Panc02 model using the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). The combination of intratumoral MBTA therapy and intraperitoneal administration of DON resulted in the complete elimination of advanced Panc02 subcutaneous tumors (140.8 ± 46.8 mm3) in 50% of treated animals and was followed by development of long-term immune memory. In the bilateral Panc02 subcutaneous tumor model, we observed a significant reduction in tumor growth in both tumors as well as prolonged survival of treated animals. The appropriate timing and method of administration of DON were also addressed to maximize its therapeutic effects and minimize its side effects. In summary, our findings demonstrate that the intraperitoneal application of DON significantly improves the efficacy of intratumoral MBTA therapy in both advanced and bilateral Panc02 subcutaneous tumor murine models.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Glutamina/uso terapéutico , Adenocarcinoma/tratamiento farmacológico , Inmunoterapia/métodos , Línea Celular Tumoral , Neoplasias Pancreáticas
6.
Endocrine ; 79(1): 171-179, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370152

RESUMEN

PURPOSE: To understand prognostic immune cell infiltration signatures in neuroendocrine neoplasms (NENs), particularly pheochromocytoma and paraganglioma (PCPG), we analyzed tumor transcriptomic data from The Cancer Genome Atlas (TCGA) and other published tumor transcriptomic data of NENs. METHODS: We used CIBERSORT to infer immune cell infiltrations from bulk tumor transcriptomic data from PCPGs, in comparison to gastroenteropancreatic neuroendocrine tumors (GEPNETs) and small cell lung carcinomas (SCLCs). PCPG immune signature was validated with NanoString immune panel in an independent cohort. Unsupervised clustering of the immune infiltration scores from CIBERSORT was used to find immune clusters. A prognostic immune score model for PCPGs and the other NENs were calculated as a linear combination of the estimated infiltration of activated CD8+/CD4+ T cells, activated NK cells, and M0 and M2 macrophages. RESULTS: In PCPGs, we found five dominant immune clusters, associated with M2 macrophages, monocytes, activated NK cells, M0 macrophages and regulatory T cells, and CD8+/CD4+ T cells respectively. Non-metastatic tumors were associated with activated NK cells and metastatic tumors were associated with M0 macrophages and regulatory T cells. In GEPNETs and SCLCs, M0 macrophages and regulatory T cells were associated with unfavorable outcomes and features, such as metastasis and high-grade tumors. The prognostic immune score model for PCPGs and the NENs could predict non-aggressive and non-metastatic diseases. In PCPGs, the immune score was also an independent predictor of metastasis-free survival in a multivariate Cox regression analysis. CONCLUSION: The transcriptomic immune signature in PCPG correlates with clinical features like metastasis and prognosis.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Tumores Neuroendocrinos , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/genética , Tumores Neuroendocrinos/genética , Paraganglioma/genética , Neoplasias de las Glándulas Suprarrenales/genética , Pronóstico , Biomarcadores de Tumor
7.
Front Oncol ; 12: 1045517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439433

RESUMEN

Metastatic pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors associated with poor prognosis and limited therapeutic options. Recent advances in oncology-related immunotherapy, specifically in targeting of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathways, have identified a new treatment potential in a variety of tumors, including advanced and rare tumors. Only a fraction of patients being treated by immune checkpoint inhibitors have shown to benefit from it, displaying a need for strategies which identify patients who may most likely show a favorable response. Building on recent, promising outcomes in a clinical study of metastatic PPGL using pembrolizumab, a humanized IgG4κ monoclonal antibody targeting the PD-1/PD-L1 pathway, we examined PD-L1 and PD-L2 expression in relation to oncogenic drivers in our PPGL patient cohort to explore whether expression can predict metastatic potential and/or be considered a predictive marker for targeted therapy. We evaluated RNA expression in the NIH cohort of 48 patients with known genetic predisposition (sporadic; pseudohypoxia: SDHB, VHL, EPAS1, EGLN1; kinase signaling: RET, NF1) and 6 normal medulla samples (NAM). For comparison, 72 PPGL samples from The Cancer Genome Atlas (TCGA) were used for analysis of gene expression based on the variant status (pseudohypoxia: SDHB, VHL, EPAS1, EGLN1; kinase signaling: NF1, RET). Expression of PD-L1 was elevated in the PPGL cohort compared to normal adrenal medulla, aligning with the TCGA analysis, whereas PD-L2 was not elevated. However, expression of PD-L1 was lower in the pseudohypoxia cluster compared to the sporadic and the kinase signaling subtype cluster, suggesting that sporadic and kinase signaling cluster PPGLs could benefit from PD-1/PD-L1 therapy more than the pseudohypoxia cluster. Within the pseudohypoxia cluster, expression of PD-L1 was significantly lower in both SDHB- and non-SDHB-mutated tumors compared to sporadic tumors. PD-L1 and PD-L2 expression was not affected by the metastatic status. We conclude that PD-L1 and PD-L2 expression in our cohort of PPGL tumors was not linked to metastatic behavior, however, the presence of PPGL driver mutation could be a predictive marker for PD-L1-targeted therapy and an important feature for further clinical studies in patients with PPGL.

8.
J Natl Cancer Inst ; 114(1): 130-138, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34415331

RESUMEN

BACKGROUND: Pheochromocytoma and paraganglioma (PPGL) are neuroendocrine tumors with frequent mutations in genes linked to the tricarboxylic acid cycle. However, no pathogenic variant has been found to date in succinyl-CoA ligase (SUCL), an enzyme that provides substrate for succinate dehydrogenase (SDH; mitochondrial complex II [CII]), a known tumor suppressor in PPGL. METHODS: A cohort of 352 patients with apparently sporadic PPGL underwent genetic testing using a panel of 54 genes developed at the National Institutes of Health, including the SUCLG2 subunit of SUCL. Gene deletion, succinate levels, and protein levels were assessed in tumors where possible. To confirm the possible mechanism, we used a progenitor cell line, hPheo1, derived from a human pheochromocytoma, and ablated and re-expressed SUCLG2. RESULTS: We describe 8 germline variants in the guanosine triphosphate-binding domain of SUCLG2 in 15 patients (15 of 352, 4.3%) with apparently sporadic PPGL. Analysis of SUCLG2-mutated tumors and SUCLG2-deficient hPheo1 cells revealed absence of SUCLG2 protein, decrease in the level of the SDHB subunit of SDH, and faulty assembly of the complex II, resulting in aberrant respiration and elevated succinate accumulation. CONCLUSIONS: Our study suggests SUCLG2 as a novel candidate gene in the genetic landscape of PPGL. Large-scale sequencing may uncover additional cases harboring SUCLG2 variants and provide more detailed information about their prevalence and penetrance.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Mutación de Línea Germinal , Humanos , Paraganglioma/genética , Paraganglioma/patología , Feocromocitoma/genética , Feocromocitoma/patología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
9.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439097

RESUMEN

Immunotherapy has become an essential component in cancer treatment. However, the majority of solid metastatic cancers, such as pheochromocytoma, are resistant to this approach. Therefore, understanding immune cell composition in primary and distant metastatic tumors is important for therapeutic intervention and diagnostics. Combined mannan-BAM, TLR ligand, and anti-CD40 antibody-based intratumoral immunotherapy (MBTA therapy) previously resulted in the complete eradication of murine subcutaneous pheochromocytoma and demonstrated a systemic antitumor immune response in a metastatic model. Here, we further evaluated this systemic effect using a bilateral pheochromocytoma model, performing MBTA therapy through injection into the primary tumor and using distant (non-injected) tumors to monitor size changes and detailed immune cell infiltration. MBTA therapy suppressed the growth of not only injected but also distal tumors and prolonged MBTA-treated mice survival. Our flow cytometry analysis showed that MBTA therapy led to increased recruitment of innate and adaptive immune cells in both tumors and the spleen. Moreover, adoptive CD4+ T cell transfer from successfully MBTA-treated mice (i.e., subcutaneous pheochromocytoma) demonstrates the importance of these cells in long-term immunological memory. In summary, this study unravels further details on the systemic effect of MBTA therapy and its use for tumor and metastasis reduction or even elimination.

10.
Cancer Immunol Immunother ; 70(11): 3303-3312, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33855601

RESUMEN

Pancreatic adenocarcinoma is one of the leading causes of cancer-related deaths, and its therapy remains a challenge. Our proposed therapeutic approach is based on the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 antibody (thus termed MBTA therapy), and has shown promising results in the elimination of subcutaneous murine melanoma, pheochromocytoma, colon carcinoma, and smaller pancreatic adenocarcinoma (Panc02). Here, we tested the short- and long-term effects of MBTA therapy in established subcutaneous Panc02 tumors two times larger than in previous study and bilateral Panc02 models as well as the roles of CD4+ and CD8+ T lymphocytes in this therapy. The MBTA therapy resulted in eradication of 67% of Panc02 tumors with the development of long-term memory as evidenced by the rejection of Panc02 cells after subcutaneous and intracranial transplantations. The initial Panc02 tumor elimination is not dependent on the presence of CD4+ T lymphocytes, although these cells seem to be important in long-term survival and resistance against tumor retransplantation. The resistance was revealed to be antigen-specific due to its inability to reject B16-F10 melanoma cells. In the bilateral Panc02 model, MBTA therapy manifested a lower therapeutic response. Despite numerous combinations of MBTA therapy with other therapeutic approaches, our results show that only simultaneous application of MBTA therapy into both tumors has potential for the treatment of the bilateral Panc02 model.


Asunto(s)
Adenocarcinoma/patología , Antígenos CD40/antagonistas & inhibidores , Imidazoles/farmacología , Lipopolisacáridos/farmacología , Mananos/farmacología , Neoplasias Pancreáticas/patología , Poli I-C/farmacología , Ácidos Teicoicos/farmacología , Adenocarcinoma/inmunología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inmunoterapia , Ligandos , Ratones , Neoplasias Pancreáticas/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Receptores Toll-Like , Neoplasias Pancreáticas
11.
Clin Cancer Res ; 26(14): 3868-3880, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32152203

RESUMEN

PURPOSE: Pheochromocytomas and paragangliomas (PCPG) are usually benign neuroendocrine tumors. However, PCPGs with mutations in the succinate dehydrogenase B subunit (SDHB) have a poor prognosis and frequently develop metastatic lesions. SDHB-mutated PCPGs exhibit dysregulation in oxygen metabolic pathways, including pseudohypoxia and formation of reactive oxygen species, suggesting that targeting the redox balance pathway could be a potential therapeutic approach. EXPERIMENTAL DESIGN: We studied the genetic alterations of cluster I PCPGs compared with cluster II PCPGs, which usually present as benign tumors. By targeting the signature molecular pathway, we investigated the therapeutic effect of ascorbic acid on PCPGs using in vitro and in vivo models. RESULTS: By investigating PCPG cells with low SDHB levels, we show that pseudohypoxia resulted in elevated expression of iron transport proteins, including transferrin (TF), transferrin receptor 2 (TFR2), and the divalent metal transporter 1 (SLC11A2; DMT1), leading to iron accumulation. This iron overload contributed to elevated oxidative stress. Ascorbic acid at pharmacologic concentrations disrupted redox homeostasis, inducing DNA oxidative damage and cell apoptosis in PCPG cells with low SDHB levels. Moreover, through a preclinical animal model with PCPG allografts, we demonstrated that pharmacologic ascorbic acid suppressed SDHB-low metastatic lesions and prolonged overall survival. CONCLUSIONS: The data here demonstrate that targeting redox homeostasis as a cancer vulnerability with pharmacologic ascorbic acid is a promising therapeutic strategy for SDHB-mutated PCPGs.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Feocromocitoma/tratamiento farmacológico , Succinato Deshidrogenasa/deficiencia , Animales , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Ácido Ascórbico/uso terapéutico , Línea Celular Tumoral/trasplante , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Hierro/metabolismo , Ratones , Mutación , Estrés Oxidativo/efectos de los fármacos , Paraganglioma , Feocromocitoma/genética , Feocromocitoma/patología , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/genética
12.
Adv Ther (Weinh) ; 3(9)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33709018

RESUMEN

Emerging evidence is demonstrating the extent of T-cell infiltration within the tumor microenvironment has favorable prognostic and therapeutic implications. Hence, immunotherapeutic strategies that augment the T-cell signature of tumors hold promising therapeutic potential. Recently, immunotherapy based on intratumoral injection of mannan-BAM, toll-like receptor ligands and anti-CD40 antibody (MBTA) demonstrated promising potential to modulate the immune phenotype of injected tumors. The strategy promotes the phagocytosis of tumor cells to facilitate the recognition of tumor antigens and induce a tumor-specific adaptive immune response. Using a syngeneic colon carcinoma model, we demonstrate MBTA's potential to augment CD8+ T-cell tumor infiltrate when administered intratumorally or subcutaneously as part of a whole tumor cell vaccine. Both immunotherapeutic strategies proved effective at controlling tumor growth, prolonged survival and induced immunological memory against the parental cell line. Collectively, our investigation demonstrates MBTA's potential to trigger a potent anti-tumor immune response.

13.
Semin Oncol ; 46(4-5): 385-392, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31739997

RESUMEN

There is no doubt that immunotherapy lies in the spotlight of current cancer research and clinical trials. However, there are still limitations in the treatment response in certain types of tumors largely due to the presence of the complex network of immunomodulatory and immunosuppressive pathways. These limitations are not likely to be overcome by current immunotherapeutic options, which often target isolated steps in immune pathways preferentially involved in adaptive immunity. Recently, we have developed an innovative anti-cancer immunotherapeutic strategy that initially elicits a strong innate immune response with subsequent activation of adaptive immunity in mouse models. Robust primary innate immune response against tumor cells is induced by toll-like receptor ligands and anti-CD40 agonistic antibodies combined with the phagocytosis-stimulating ligand mannan, anchored to a tumor cell membrane by biocompatible anchor for membrane. This immunotherapeutic approach results in a dramatic therapeutic response in large established murine subcutaneous tumors including melanoma, sarcoma, pancreatic adenocarcinoma, and pheochromocytoma. Additionally, eradication of metastases and/or long-lasting resistance to subsequent re-challenge with tumor cells was also accomplished. Current and future advantages of this immunotherapeutic approach and its possible combinations with other available therapies are discussed in this review.


Asunto(s)
Inmunoterapia , Neoplasias/terapia , Inmunidad Adaptativa , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Terapia Combinada , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Inmunomodulación , Inmunoterapia/métodos , Ligandos , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Receptores Toll-Like/metabolismo , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
14.
Cancers (Basel) ; 11(5)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083581

RESUMEN

Therapeutic options for metastatic pheochromocytoma/paraganglioma (PHEO/PGL) are limited. Here, we tested an immunotherapeutic approach based on intratumoral injections of mannan-BAM with toll-like receptor ligands into subcutaneous PHEO in a mouse model. This therapy elicited a strong innate immunity-mediated antitumor response and resulted in a significantly lower PHEO volume compared to the phosphate buffered saline (PBS)-treated group and in a significant improvement in mice survival. The cytotoxic effect of neutrophils, as innate immune cells predominantly infiltrating treated tumors, was verified in vitro. Moreover, the combination of mannan-BAM and toll-like receptor ligands with agonistic anti-CD40 was associated with increased mice survival. Subsequent tumor re-challenge also supported adaptive immunity activation, reflected primarily by long-term tumor-specific memory. These results were further verified in metastatic PHEO, where the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 into subcutaneous tumors resulted in significantly less intense bioluminescence signals of liver metastatic lesions induced by tail vein injection compared to the PBS-treated group. Subsequent experiments focusing on the depletion of T cell subpopulations confirmed the crucial role of CD8+ T cells in inhibition of bioluminescence signal intensity of liver metastatic lesions. These data call for a new therapeutic approach in patients with metastatic PHEO/PGL using immunotherapy that initially activates innate immunity followed by an adaptive immune response.

15.
Int Immunopharmacol ; 59: 86-96, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29635103

RESUMEN

Immunotherapy emerges as a fundamental approach in cancer treatment. Up to date, the efficacy of numerous different immunotherapies has been evaluated. The use of microorganisms or their parts for immune cell activation, referred to as Pathogen-Associated Molecular Patterns (PAMPs), represents highly promising concept. The therapeutic effect of PAMPs can be further amplified by suitable combination of different types of PAMPs such as Toll like receptor (TLR) agonists and phagocytosis activating ligands. Previously, we used the combination of phagocytosis activating ligand (mannan) and mixture of TLR agonists (resiquimod (R-848), poly(I:C), inactivated Listeria monocytogenes) for successful treatment of melanoma in murine B16-F10 model. In the present study, we optimized the composition and timing of previously used mixture. Therapeutic mixture based on well-defined chemical compounds consisted of mannan anchoring to tumor cell surface by biocompatible anchor for membranes (BAM) and TLR agonists resiquimod, poly(I:C), and lipoteichoic acid (LTA). The optimization resulted in (1) eradication of advanced stage progressive melanoma in 83% of mice, (2) acquisition of resistance to tumor re-transplantation, and (3) potential anti-metastatic effect. After further investigation of mechanisms, underlying anti-tumor responses, we concluded that both innate and adaptive immunity are activated and involved in these processes. We tested the efficacy of our treatment in Panc02 murine model of aggressive pancreatic tumor as well. Simultaneous application of agonistic anti-CD40 antibody was necessary to achieve effective therapeutic response (80% recovery) in this model. Our results suggest that herein presented immunotherapeutic approach is a promising cancer treatment strategy with the ability to eradicate not only primary tumors but also metastases.


Asunto(s)
Adenocarcinoma/terapia , Melanoma Experimental/terapia , Neoplasias Pancreáticas/terapia , Fagocitosis , Receptores Toll-Like/agonistas , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Animales , Línea Celular Tumoral , Femenino , Imidazoles/uso terapéutico , Inmunoterapia , Lipopolisacáridos/uso terapéutico , Linfocitos Infiltrantes de Tumor/inmunología , Mananos/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Poli I-C/uso terapéutico , Ácidos Teicoicos/uso terapéutico , Carga Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...