Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 327(1): F128-F136, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695076

RESUMEN

Acute kidney injury (AKI) is extremely prevalent among hospitalizations and presents a significant risk for the development of chronic kidney disease and increased mortality. Ischemia caused by shock, trauma, and transplant are common causes of AKI. To attenuate ischemic AKI therapeutically, we need a better understanding of the physiological and cellular mechanisms underlying damage. Instances of ischemia are most damaging in proximal tubule epithelial cells (PTECs) where hypoxic signaling cascades, and perhaps more rapidly, posttranslational modifications (PTMs), act in concert to change cellular metabolism. Here, we focus on the effects of the understudied PTM, lysine succinylation. We have previously shown a protective effect of protein hypersuccinylation on PTECs after depletion of the desuccinylase sirtuin5. General trends in the results suggested that hypersuccinylation led to upregulation of peroxisomal activity and was protective against kidney injury. Included in the list of changes was the Parkinson's-related deglycase Park7. There is little known about any links between peroxisome activity and Park7. In this study, we show in vitro and in vivo that Park7 has a crucial role in protection from AKI and upregulated peroxisome activity. These data in combination with published results of Park7's protective role in cardiovascular damage and chronic kidney disease lead us to hypothesize that succinylation of Park7 may ameliorate oxidative damage resulting from AKI and prevent disease progression. This novel mechanism provides a potential therapeutic mechanism that can be targeted.NEW & NOTEWORTHY Succinylation is an understudied posttranslational modification that has been shown to increase peroxisomal activity. Furthermore, increased peroxisomal activity has been shown to reduce oxidative stress and protect proximal tubules after acute kidney injury. Analysis of mass spectrometry succinylomic and proteomic data reveals a novel role for Parkinson's related Park7 in mediating Nrf2 antioxidant response after kidney injury. This novel protection pathway provides new insights for kidney injury prevention and development of novel therapeutics.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Proteína Desglicasa DJ-1 , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Sirtuinas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Ratones , Estrés Oxidativo , Lisina/metabolismo
2.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38044490

RESUMEN

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Asunto(s)
Lesión Renal Aguda , Ácidos Dicarboxílicos , Suplementos Dietéticos , Daño por Reperfusión , Animales , Humanos , Ratones , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Cisplatino , Ácidos Dicarboxílicos/administración & dosificación , Ácidos Grasos , Proteómica , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...