Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 9(1)2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646526

RESUMEN

Zero-calorie high-intensity sweeteners from natural sources perform very well in the market place. This has encouraged food scientists to continue the effort to search for novel natural ingredients to satisfy consumer demand. Rebaudioside C (reb C) is the third most prevalent steviol glycoside in the leaves of the Stevia rebaudiana Bertoni plant, but has limited applications in food and beverage products due to its low sweetness and high lingering bitterness compared to other major steviol glycosides, such as rebaudioside A (reb A). Here we present a new enzyme modification strategy to improve the taste profile of reb C by using Cargill's propriety enzyme and sucrose as a glucose donor. A novel α-1→6-glucosyl reb C derivative was produced and its structure was elucidated by mass spectrometry and NMR spectroscopy. Sensory analysis demonstrated that this new reb C derivative has improved sweetness, reduced bitterness, and enhanced solubility in water.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Glicosiltransferasas/metabolismo , Oligosacáridos/biosíntesis , Edulcorantes/química , Cromatografía Líquida de Alta Presión , Diterpenos de Tipo Kaurano/química , Espectroscopía de Resonancia Magnética , Conformación Molecular , Oligosacáridos/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Stevia/química , Stevia/metabolismo , Edulcorantes/metabolismo
2.
J Chem Phys ; 149(13): 134314, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30292228

RESUMEN

Studies of exciton and hole stabilization in multichromophoric systems underpin our understanding of electron transfer and transport in materials and biomolecules. The simplest model systems are dimeric, and recently we compared the gas-phase spectroscopy and dynamics of van der Waals dimers of fluorene, 9-methylfluorene (MF), and 9,9'-dimethylfluorene (F1) to assess how sterically controlled facial encumbrance modulates the dynamics of excimer formation and charge resonance stabilization (CRS). Dimers of fluorene and MF show only excimer emission upon electronic excitation, and significant CRS as evidenced in a reduced ionization potential for the dimer relative the monomer. By contrast, the dimer of F1 shows no excimeric emission, rather structured emission from the locally excited state of a tilted (non π-stacked) dimer, evidencing the importance of C-H/π interactions and increased steric constraints that restrict a cofacial approach. In this work, we report our full results on van der Waals clusters of F1, using a combination of theory and experiments that include laser-induced fluorescence, mass-selected two-color resonant two-photon ionization spectroscopy, and two-color appearance potential measurements. We use the latter to derive the binding energies of the F1 dimer in ground, excited, and cation radical states. Our results are compared with van der Waals and covalently linked clusters of fluorene to assess both the relative strength of π-stacking and C-H/π interactions in polyaromatic assemblies and the role of π-stacking in excimer formation and CRS.

3.
J Phys Chem Lett ; 8(21): 5272-5276, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29020769

RESUMEN

Understanding geometrical and size dependencies of through-space charge delocalization in multichromophoric systems is critical to model electron transfer and transport in materials and biomolecules. In this work, we examine the size evolution of hole delocalization in van der Waals clusters of fluorene (i.e., (F)n), where a range of geometries are possible, reflecting both π-stacking and C-H/π interactions. Using mass-selected two-color resonant two-photon ionization spectroscopy (2CR2PI), we measure electronic spectra and vertical ionization potentials (IPs) in the gas phase. Results are compared with model covalently linked assemblies (denoted Fn), exhibiting a sterically enforced cofacial (i.e., π-stacked) orientation of chromophores. For both systems, an inverse size dependence (i.e., 1/n) of IP vs cluster size is found. Surprisingly, the values for the two sets fall on the same line! This trend is examined via theory, which emphasizes the important role of π-stacking, and its geometrical dependencies, in the process of hole delocalization in multichromophoric assemblies.

4.
J Phys Chem Lett ; 7(15): 3042-5, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27447947

RESUMEN

Exciton formation and charge separation and transport are key dynamical events in a variety of functional polymeric materials and biological systems, including DNA. Beyond the necessary cofacial approach of a pair of aromatic molecules at van der Waals contact, the extent of overlap and necessary geometrical reorganization for optimal stabilization of an excimer vs dimer cation radical remain unresolved. Here, we compare experimentally the dynamics of excimer formation (via emission) and charge stabilization (via threshold ionization) of a novel covalently linked, cofacially stacked fluorene dimer (F2) with the unlinked van der Waals dimer of fluorene, that is, (F)2. Although the measured ionization potentials are identical, the excimeric state is stabilized by up to ∼30 kJ/mol in covalently linked F2. Supported by theory, this work demonstrates for the first time experimentally that optimal stabilization of an excimer requires a perfect sandwich-like geometry with maximal overlap, whereas hole stabilization in π-stacked aggregates is less geometrically restrictive.

5.
J Phys Chem A ; 117(47): 12429-37, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24156288

RESUMEN

Building upon our recent studies of noncovalent interactions in chlorobenzene and bromobenzene clusters, in this work we focus on interactions of chlorobenzene (PhCl) with a prototypical N atom donor, ammonia (NH3). Thus, we have obtained electronic spectra of PhCl···(NH3)n (n = 1-3) complexes in the region of the PhCl monomer S0 -S1 (ππ*) transition using resonant 2-photon ionization (R2PI) methods combined with time-of-flight mass analysis. Consistent with previous studies, we find that upon ionization the PhCl···NH3 dimer cation radical reacts primarily via Cl atom loss. A second channel, HCl loss, is identified for the first time in R2PI studies of the 1:1 complex, and a third channel, H atom loss, is identified for the first time. While prior studies have assumed the dominance of a π-type complex, we find that the reactive complex corresponds instead to an in-plane σ-type complex. This is supported by electronic structure calculations using density functional theory and post-Hartree-Fock methods and Franck-Condon analysis. The reactive pathways in this system were extensively characterized computationally, and consistent with results from previous calculations, we find two nearly isoenergetic arenium ions (Wheland intermediates; denoted WH1, WH2), which lie energetically below the initially formed dimer cation radical complex. At the energy of our experiment, intermediate WH1, produced from ipso-addition, is not stable with respect to Cl or HCl loss, and the relative branching between these channels observed in our experiment is well reproduced by microcanonical transition state theory calculations based upon the calculated parameters. Intermediate WH2, where NH3 adds ortho to the halogen, decomposes over a large barrier via H atom loss to form protonated o-chloroaniline. This channel is not open at the (2-photon) energy of our experiments, and it is suggested that photodissociation of a long-lived (i.e., several ns) WH2 intermediate leads to the observed products.

6.
J Phys Chem A ; 117(50): 13556-63, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23978255

RESUMEN

Noncovalent interactions play an important role in many chemical and biochemical processes. Building upon our recent study of the homoclusters of chlorobenzene, where π-π stacking and CH/π interactions were identified as the most important binding motifs, in this work we present a study of bromobenzene (PhBr) and mixed bromobenzene-benzene clusters. Electronic spectra in the region of the PhBr monomer S0-S1 (ππ*) transition were obtained using resonant two-photon ionization (R2PI) methods combined with time-of-flight mass analysis. As previously found for related systems, the PhBr cluster spectra show a broad feature whose center is red-shifted from the monomer absorption, and electronic structure calculations indicate the presence of multiple isomers and Franck-Condon activity in low-frequency intermolecular modes. Calculations at the M06-2X/aug-cc-pVDZ level find in total eight minimum energy structures for the PhBr dimer: four π-stacked structures differing in the relative orientation of the Br atoms (denoted D1-D4), one T-shaped structure (D5), and three halogen bonded structures (D6-D8). The calculated binding energies of these complexes, corrected for basis set superposition error (BSSE) and zero-point energy (ZPE), are in the range of -6 to -24 kJ/mol. Time-dependent density functional theory (TDDFT) calculations predict that these isomers absorb over a range that is roughly consistent with the breadth of the experimental spectrum. To examine the influence of dipole-dipole interaction, R2PI spectra were also obtained for the mixed PhBr···benzene dimer, where the spectral congestion is reduced and clear vibrational structure is observed. This structure is well-simulated by Franck-Condon calculations that incorporate the lowest frequency intermolecular modes. Calculations find four minimum energy structures for the mixed dimer and predict that the binding energy of the global minimum is reduced by ~30% relative to the global minimum PhBr dimer structure.


Asunto(s)
Benceno/química , Bromo/química , Bromobencenos/química , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Análisis Espectral
7.
J Chem Phys ; 137(18): 184307, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23163371

RESUMEN

Noncovalent interactions such as hydrogen bonding, π-π stacking, CH/π interactions, and halogen bonding play crucial roles in a broad spectrum of chemical and biochemical processes, and can exist in cooperation or competition. Here we report studies of the homoclusters of chlorobenzene, a prototypical system where π-π stacking, CH/π interactions, and halogen bonding interactions may all be present. The electronic spectra of chlorobenzene monomer and clusters (Clbz)(n) with n = 1-4 were obtained using resonant 2-photon ionization in the origin region of the S(0)-S(1) (ππ*) state of the monomer. The cluster spectra show in all cases a broad spectrum whose center is redshifted from the monomer absorption. Electronic structure calculations aid in showing that the spectral broadening arises in large part from inhomogeneous sources, including the presence of multiple isomers and Franck-Condon (FC) activity associated with geometrical changes induced by electronic excitation. Calculations at the M06-2x/aug-cc-pVDZ level find in total five minimum energy structures for the dimer, four π-stacked structures, and one T-shaped, and six representative minimum energy structures were found for the trimer. The calculated time-dependent density functional theory spectra using range-separated and meta-GGA hybrid functionals show that these isomers absorb over a range that is roughly consistent with the breadth of the experimental spectra, and the calculated absorptions are redshifted with respect to the monomer transition, in agreement with experiment. Due to the significant geometry change in the electronic transition, where for the dimer a transition from a parallel displaced to sandwich structure occurs with a reduced separation of the two monomers, significant FC activity is predicted in low frequency intermolecular modes.


Asunto(s)
Clorobencenos/química , Halógenos/química , Fotones , Sitios de Unión , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...