Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(1): e0226814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31914161

RESUMEN

Precipitation, as a primary hydrological variable in the water cycle plays an important role in hydrological modeling. The reliability of hydrological modeling is highly related to the quality of precipitation data. Accurate long-term gauged precipitation in the Mekong River Basin, however, is limited. Therefore, the main objective of this study is to assess the performances of various gridded precipitation datasets in rainfall-runoff and flood-inundation modeling of the whole basin. Firstly, the performance of the Rainfall-Runoff-Inundation (RRI) model in this basin was evaluated using the gauged rainfall. The calibration (2000-2003) and validation (2004-2007) results indicated that the RRI model had acceptable performance in the Mekong River Basin. In addition, five gridded precipitation datasets including APHRODITE, GPCC, PERSIANN-CDR, GSMaP (RNL), and TRMM (3B42V7) from 2000 to 2007 were applied as the input to the calibrated model. The results of the simulated river discharge indicated that TRMM, GPCC, and APHRODITE performed better than other datasets. The statistical index of the annual maximum inundated area indicated similar conclusions. Thus, APHRODITE, TRMM, and GPCC precipitation datasets were considered suitable for rainfall-runoff and flood inundation modeling in the Mekong River Basin. This study provides useful guidance for the application of gridded precipitation in hydrological modeling in the Mekong River basin.


Asunto(s)
Inundaciones , Modelos Teóricos , Lluvia/química , Ríos/química , Movimientos del Agua , Hidrología , Reproducibilidad de los Resultados , Vietnam
2.
Sci Total Environ ; 631-632: 597-607, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29533796

RESUMEN

Most of studies on sediment dynamics in stable shallow lakes focused on the resuspension process as it is the dominant process. However, understanding of sediment dynamics in a shallow lake influenced by flood pulse is unclear. We tested a hypothesis that floodplain vegetation plays as a significant role in lessening the intensity of resuspension process in a shallow lake characterized by the flood pulse system. Therefore, this study aimed to investigate sediment dynamics in this type of shallow lake. The target was Tonle Sap Lake (TSL), which is a large shallow lake influenced by a flood pulse system of Mekong River located in Southeast Asia. An extensive and seasonal sampling survey was conducted to measure total suspended solid (TSS) concentrations, sedimentation and resuspension rates in TSL and its 4 floodplain areas. The study revealed that sedimentation process was dominant (TSS ranged: 3-126mgL-1) in the high water period (September-December) while resuspension process was dominant (TSS ranged: 4-652mgL-1) only in the low water period (March-June). In addition, floodplain vegetation reduced the resuspension of sediment (up to 26.3%) in water. The implication of the study showed that resuspension is a seasonally dominant process in shallow lake influenced by the flood pulse system at least for the case of TSL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...