Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(4): 110721, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476996

RESUMEN

The resistance to transcription factor-mediated reprogramming into pluripotent stem cells is one of the distinctive features of cancer cells. Here we dissect the profiles of reprogramming factor binding and the subsequent transcriptional response in cancer cells to reveal its underlying mechanisms. Using clear cell sarcomas (CCSs), we show that the driver oncogene EWS/ATF1 misdirects the reprogramming factors to cancer-specific enhancers and thereby impairs the transcriptional response toward pluripotency that is otherwise provoked. Sensitization to the reprogramming cue is observed in other cancer types when the corresponding oncogenic signals are pharmacologically inhibited. Exploiting this oncogene dependence of the transcriptional "stiffness," we identify mTOR signaling pathways downstream of EWS/ATF1 and discover that inhibiting mTOR activity substantially attenuates the propagation of CCS cells in vitro and in vivo. Our results demonstrate that the early transcriptional response to cell fate perturbations can be a faithful readout to identify effective therapeutics targets in cancer cells.


Asunto(s)
Oncogenes , Sarcoma de Células Claras , Humanos , Sarcoma de Células Claras/genética , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética
2.
Nat Metab ; 4(2): 254-268, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145326

RESUMEN

ß cells have a limited capacity for regeneration, which predisposes towards diabetes. Here, we show that, of the MYC family members, Mycl plays a key role in proliferation of pancreatic endocrine cells. Genetic ablation of Mycl causes a reduction in the proliferation of pancreatic endocrine cells in neonatal mice. By contrast, the expression of Mycl in adult mice stimulates the proliferation of ß and α cells, and the cells persist after withdrawal of Mycl expression. A subset of the expanded α cells give rise to insulin-producing cells after this withdrawal. Transient Mycl expression in vivo is sufficient to normalize the hyperglycaemia of diabetic mice. In vitro expression of Mycl similarly provokes active replication in islet cells, even in those from aged mice. Finally, we show that MYCL stimulates the division of human adult cadaveric islet cells. Our results demonstrate that the induction of Mycl alone expands the functional ß-cell population, which may provide a regenerative strategy for ß cells.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Hormonas Pancreáticas/metabolismo
3.
Biochem Biophys Res Commun ; 599: 43-50, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35168063

RESUMEN

The cyclin-dependent kinase inhibitor p16Ink4a plays a central role in cellular senescence in vitro. Although previous studies suggested cellular senescence is integrated in the systemic mechanisms of organismal aging, the localization and the dynamics of p16Ink4a in tissues remain poorly understood, which hinders uncovering the role of p16Ink4a under the in vivo context. One of the reasons is due to the lack of reliable reagents; as we also demonstrate here that commonly used antibodies raised against human p16INK4A barely recognize its murine ortholog. Here we generated a mouse model, in which the endogenous p16Ink4a is HA-tagged at its N-terminus, to explore the protein expression of p16Ink4a at the organismal level. p16Ink4a was induced at the protein level along the course of senescence in primary embryonic fibroblasts derived from the mice, consistently to its transcriptional level. Remarkably, however, p16Ink4a was not detected in the tissues of the mice exposed to pro-senescence conditions including genotoxic stress and activation of oncogenic signaling pathways, indicating that there is only subtle p16Ink4a proteins induced. These results in our mouse model highlight the need for caution in evaluating p16Ink4a protein expression in vivo.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Animales , Reacciones Cruzadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/inmunología , Daño del ADN , Exones , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Células 3T3 NIH
4.
Nat Commun ; 12(1): 5041, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413299

RESUMEN

In vivo reprogramming provokes a wide range of cell fate conversion. Here, we discover that in vivo induction of higher levels of OSKM in mouse somatic cells leads to increased expression of primordial germ cell (PGC)-related genes and provokes genome-wide erasure of genomic imprinting, which takes place exclusively in PGCs. Moreover, the in vivo OSKM reprogramming results in development of cancer that resembles human germ cell tumors. Like a subgroup of germ cell tumors, propagated tumor cells can differentiate into trophoblasts. Moreover, these tumor cells give rise to induced pluripotent stem cells (iPSCs) with expanded differentiation potential into trophoblasts. Remarkably, the tumor-derived iPSCs are able to contribute to non-neoplastic somatic cells in adult mice. Mechanistically, DMRT1, which is expressed in PGCs, drives the reprogramming and propagation of the tumor cells in vivo. Furthermore, the DMRT1-related epigenetic landscape is associated with trophoblast competence of the reprogrammed cells and provides a therapeutic target for germ cell tumors. These results reveal an unappreciated route for somatic cell reprogramming and underscore the impact of reprogramming in development of germ cell tumors.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias/patología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Reprogramación Celular/fisiología , Epigénesis Genética , Femenino , Impresión Genómica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos ICR , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Factores de Transcripción/genética
5.
J Reprod Dev ; 66(5): 459-467, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-32624547

RESUMEN

PTBP1, a well-conserved RNA-binding protein, regulates cellular development by tuning posttranscriptional mRNA modification such as alternative splicing (AS) or mRNA stabilization. We previously revealed that the loss of Ptbp1 in spermatogonia causes the dysregulation of spermatogenesis, but the molecular mechanisms by which PTBP1 regulates spermatogonium homeostasis are unclear. In this study, changes of AS or transcriptome in Ptbp1-knockout (KO) germline stem cells (GSC), an in vitro model of proliferating spermatogonia, was determined by next generation sequencing. We identified more than 200 differentially expressed genes, as well as 85 genes with altered AS due to the loss of PTBP1. Surprisingly, no differentially expressed genes overlapped with different AS genes in Ptbp1-KO GSC. In addition, we observed that the mRNA expression of Nanos3, an essential gene for normal spermatogenesis, was significantly decreased in Ptbp1-KO spermatogonia. We also revealed that PTBP1 protein binds to Nanos3 mRNA in spermatogonia. Furthermore, Nanos3+/-;Ptbp1+/- mice exhibited abnormal spermatogenesis, which resembled the effects of germ cell-specific Ptbp1 KO, whereas no significant abnormality was observed in mice heterozygous for either gene alone. These data implied that PTBP1 regulates alternative splicing and transcriptome in spermatogonia under different molecular pathways, and contributes spermatogenesis, at least in part, in concert with NANOS3.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Animales , Eliminación de Gen , Genes Reguladores , Células Germinativas/citología , Heterocigoto , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética , RNA-Seq , Testículo/metabolismo , Transcriptoma
6.
Nat Commun ; 11(1): 3199, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581223

RESUMEN

De novo establishment of DNA methylation is accomplished by DNMT3A and DNMT3B. Here, we analyze de novo DNA methylation in mouse embryonic fibroblasts (2i-MEFs) derived from DNA-hypomethylated 2i/L ES cells with genetic ablation of Dnmt3a or Dnmt3b. We identify 355 and 333 uniquely unmethylated genes in Dnmt3a and Dnmt3b knockout (KO) 2i-MEFs, respectively. We find that Dnmt3a is exclusively required for de novo methylation at both TSS regions and gene bodies of Polycomb group (PcG) target developmental genes, while Dnmt3b has a dominant role on the X chromosome. Consistent with this, tissue-specific DNA methylation at PcG target genes is substantially reduced in Dnmt3a KO embryos. Finally, we find that human patients with DNMT3 mutations exhibit reduced DNA methylation at regions that are hypomethylated in Dnmt3 KO 2i-MEFs. In conclusion, here we report a set of unique de novo DNA methylation target sites for both DNMT3 enzymes during mammalian development that overlap with hypomethylated sites in human patients.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Animales , Diferenciación Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Represión Epigenética/genética , Femenino , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación , Especificidad de Órganos , Proteínas del Grupo Polycomb , Sitio de Iniciación de la Transcripción , ADN Metiltransferasa 3B
7.
Nat Commun ; 10(1): 3999, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488818

RESUMEN

Clear cell sarcoma (CCS) is a rare soft tissue sarcoma caused by the EWS/ATF1 fusion gene. Here, we established induced pluripotent stem cells (iPSCs) from EWS/ATF1-controllable murine CCS cells harboring sarcoma-associated genetic abnormalities. Sarcoma-iPSC mice develop secondary sarcomas immediately after EWS/ATF1 induction, but only in soft tissue. EWS/ATF1 expression induces oncogene-induced senescence in most cell types in sarcoma-iPSC mice but prevents it in sarcoma cells. We identify Tppp3-expressing cells in peripheral nerves as a cell-of-origin for these sarcomas. We show cell type-specific recruitment of EWS/ATF1 to enhancer regions in CCS cells. Finally, epigenetic silencing at these enhancers induces senescence and inhibits CCS cell growth through altered EWS/ATF1 binding. Together, we propose that distinct responses to premature senescence are the basis for the cell type-specificity of cancer development.


Asunto(s)
Factor de Transcripción Activador 1/genética , Proteínas de Fusión Oncogénica/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Células Claras/genética , Animales , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Neoplasias Experimentales , Sistema Nervioso , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Sarcoma de Células Claras/patología , Transcriptoma
8.
Stem Cell Reports ; 12(5): 1113-1128, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31056481

RESUMEN

CpG islands (CGIs) including those at imprinting control regions (ICRs) are protected from de novo methylation in somatic cells. However, many cancers often exhibit CGI hypermethylation, implying that the machinery is impaired in cancer cells. Here, we conducted a comprehensive analysis of CGI methylation during somatic cell reprogramming. Although most CGIs remain hypomethylated, a small subset of CGIs, particularly at several ICRs, was often de novo methylated in reprogrammed pluripotent stem cells (PSCs). Such de novo ICR methylation was linked with the silencing of reprogramming factors, which occurs at a late stage of reprogramming. The ICR-preferred CGI hypermethylation was similarly observed in human PSCs. Mechanistically, ablation of Dnmt3a prevented PSCs from de novo ICR methylation. Notably, the ICR-preferred CGI hypermethylation was observed in pediatric cancers, while adult cancers exhibit genome-wide CGI hypermethylation. These results may have important implications in the pathogenesis of pediatric cancers and the application of PSCs.


Asunto(s)
Reprogramación Celular/genética , Metilación de ADN/genética , Impresión Genómica/genética , Células Madre Pluripotentes/metabolismo , Adulto , Animales , Células Cultivadas , Islas de CpG/genética , Epigénesis Genética/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos ICR , Células Madre Pluripotentes/citología
9.
Cell Rep ; 26(10): 2608-2621.e6, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840885

RESUMEN

Atypical teratoid/rhabdoid tumor (AT/RT), which harbors SMARCB1 mutation and exhibits a characteristic histology of rhabdoid cells, has a poor prognosis because of the lack of effective treatments. Here, we establish human SMARCB1-deficient pluripotent stem cells (hPSCs). SMARCB1-deficient hPSC-derived neural progenitor-like cells (NPLCs) efficiently give rise to brain tumors when transplanted into the mouse brain. Notably, activation of an embryonic stem cell (ESC)-like signature confers a rhabdoid histology in SMARCB1-deficient NPLC-derived tumors and causes a poor prognosis. Consistently, we find the activation of the ESC-like gene expression signature and an ESC-like DNA methylation landscape in clinical specimens of AT/RT. Finally, we identify candidate genes that maintain the activation of the ESC-like signature and the growth of AT/RT cells. Collectively, SMARCB1-deficient hPSCs offer the human models for AT/RT, which uncover the role of the activated ESC-like signature in the poor prognosis and unique histology of AT/RT.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Animales , Técnicas de Cultivo de Célula , Humanos , Ratones , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cancer Sci ; 110(3): 926-938, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30588718

RESUMEN

The emergence of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has dramatically advanced how we manipulate the genome. Regarding in vivo experiments, Cas9-transgenic animals could provide efficient and complex genome editing. However, this potential has not been fully realized partly due to a lack of convenient platforms and limited examples of successful disease modeling. Here, we devised two doxycycline (Dox)-inducible Cas9 platforms that efficiently enable conditional genome editing at multiple loci in vitro and in vivo. In these platforms, we took advantage of a site-specific multi-segment cloning strategy for rapid and easy integration of multiple single guide (sg)RNAs. We found that a platform containing rtTA at the Rosa26 locus and TRE-Cas9 together with multiple sgRNAs at the Col1a1 locus showed higher efficiency of inducible insertions and deletions (indels) with minimal leaky editing. Using this platform, we succeeded to model Wilms' tumor and the progression of intestinal adenomas with multiple mutations including an activating mutation with a large genomic deletion. Collectively, the established platform should make complicated disease modeling in the mouse easily attainable, extending the range of in vivo experiments in various biological fields including cancer research.


Asunto(s)
Adenoma/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Neoplasias Intestinales/genética , Neoplasias Renales/genética , ARN Guía de Kinetoplastida/genética , Tumor de Wilms/genética , Adenoma/patología , Animales , Femenino , Edición Génica/métodos , Neoplasias Intestinales/patología , Neoplasias Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mutación/genética , Tumor de Wilms/patología
11.
Nat Commun ; 9(1): 2081, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802314

RESUMEN

The faithful shutdown of the somatic program occurs in the early stage of reprogramming. Here, we examined the effect of in vivo reprogramming on Kras-induced cancer development. We show that the transient expression of reprogramming factors (1-3 days) in pancreatic acinar cells results in the transient repression of acinar cell enhancers, which are similarly observed in pancreatitis. We next demonstrate that Kras and p53 mutations are insufficient to induce ERK signaling in the pancreas. Notably, the transient expression of reprogramming factors in Kras mutant mice is sufficient to induce the robust and persistent activation of ERK signaling in acinar cells and rapid formation of pancreatic ductal adenocarcinoma. In contrast, the forced expression of acinar cell-related transcription factors inhibits the pancreatitis-induced activation of ERK signaling and development of precancerous lesions in Kras-mutated acinar cells. These results underscore a crucial role of dedifferentiation-associated epigenetic regulations in the initiation of pancreatic cancers.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Reprogramación Celular/genética , Epigénesis Genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Células Madre Embrionarias de Ratones , Mutación , Páncreas/citología , Páncreas/patología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Estómago/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , alfa-Fetoproteínas/metabolismo
12.
J Agric Food Chem ; 56(3): 1122-30, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18181570

RESUMEN

This study showed that gluten proteins were extracted with distilled water from dough prepared in the presence of NaCl. To elucidate the interrelationship of NaCl and gluten proteins in dough, the extracted proteins were characterized. These proteins were primarily found to be soluble gliadin monomers by N-terminal amino acid sequencing and analytical ultracentrifugation. Extracted proteins were aggregated by the addition of NaCl at concentrations of >10 mM. A decrease in beta-turn structures, which expose tryptophan residues to an aqueous environment in the presence of NaCl, was revealed by Fourier transform infrared analysis and scanning of fluorescence spectra. In addition, cross-linking experiments with disuccinimidyl tartrate showed that a large amount of protein was cross-linked in the dough only in the presence of NaCl. These results suggest that both interactions and distances between proteins were altered by the addition of NaCl.


Asunto(s)
Glútenes/química , Glútenes/efectos de los fármacos , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Pan/análisis , Gliadina/análisis , Gliadina/química , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...