Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 5(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31821172

RESUMEN

BACKGROUNDWe hypothesized that obesity-associated hepatosteatosis is a pathophysiological chemical depot for fat-soluble vitamins and altered normal physiology. Using α-tocopherol (vitamin E) as a model vitamin, pharmacokinetics and kinetics principles were used to determine whether excess liver fat sequestered α-tocopherol in women with obesity-associated hepatosteatosis versus healthy controls.METHODSCustom-synthesized deuterated α-tocopherols (d3- and d6-α-tocopherols) were administered to hospitalized healthy women and women with hepatosteatosis under investigational new drug guidelines. Fluorescently labeled α-tocopherol was custom-synthesized for cell studies.RESULTSIn healthy subjects, 85% of intravenous d6-α-tocopherol disappeared from the circulation within 20 minutes but reappeared within minutes and peaked at 3-4 hours; d3- and d6-α-tocopherols localized to lipoproteins. Lipoprotein redistribution occurred only in vivo within 1 hour, indicating a key role of the liver in uptake and re-release. Compared with healthy subjects who received 2 mg, subjects with hepatosteatosis had similar d6-α-tocopherol entry rates into liver but reduced initial release rates (P < 0.001). Similarly, pharmacokinetics parameters were reduced in hepatosteatosis subjects, indicating reduced hepatic d6-α-tocopherol output. Reductions in kinetics and pharmacokinetics parameters in hepatosteatosis subjects who received 2 mg were echoed by similar reductions in healthy subjects when comparing 5- and 2-mg doses. In vitro, fluorescent-labeled α-tocopherol localized to lipid in fat-loaded hepatocytes, indicating sequestration.CONCLUSIONSThe unique role of the liver in vitamin E physiology is dysregulated by excess liver fat. Obesity-associated hepatosteatosis may produce unrecognized hepatic vitamin E sequestration, which might subsequently drive liver disease. Our findings raise the possibility that hepatosteatosis may similarly alter hepatic physiology of other fat-soluble vitamins.TRIAL REGISTRATIONClinicalTrials.gov, NCT00862433.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases and NIH grants DK053213-13, DK067494, and DK081761.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Vitamina E/administración & dosificación , Vitamina E/farmacocinética , Adolescente , Adulto , Línea Celular , Femenino , Células Hep G2 , Humanos , Cinética , Lípidos , Lipoproteínas , Hígado/metabolismo , Obesidad , Adulto Joven , alfa-Tocoferol/administración & dosificación , alfa-Tocoferol/farmacocinética
2.
IUBMB Life ; 71(4): 424-429, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30556640

RESUMEN

Although vitamin E has been recognized as a critical micronutrient to neuronal health for more than half a century, vitamin E transport and regulation in the brain remain a mystery. Currently, the majority of what is known about vitamin E transport has been delineated in the liver. However, clues from the pathogenesis of neurological-related vitamin E deficient diseases point to compromised neuronal integrity and function, underlining the critical need to understand vitamin E regulation in the CNS. Additionally, most of the same molecular players involved in vitamin E transport in the liver are also found in CNS, including sterol SRB1, TTP, and ABCA/ABCG, suggesting similar intracellular pathways between these organ systems. Finally, based on chemical similarities, intracellular CNS shuttling of vitamin E likely resembles cholesterol's use of ApoE particles. Utilizing this information, this review will address what is currently known about trafficking vitamin E across the blood brain barrier in order to ensure an adequate supply of the essential nutrient to the brain. Although debatable, the health of the brain in relation to vitamin E levels has been demonstrated, most notably in oxidative stress-related conditions such as ataxias, Alzheimer's disease, and Parkinson's disease. Future vitamin E research is vital in understanding how the regulation of the vitamin can aid in the prevention, treatment, and curing of neurological diseases. © 2018 IUBMB Life, 71(4):424-429, 2019.


Asunto(s)
Sistema Nervioso Central/metabolismo , Deficiencia de Vitamina E/etiología , Vitamina E/farmacocinética , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Humanos , Ratones , Vitamina E/metabolismo , alfa-Tocoferol/metabolismo
3.
Antioxidants (Basel) ; 6(3)2017 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-28672782

RESUMEN

For the last two decades, it has been hotly debated whether vitamin E-the major lipid-soluble antioxidant, which functions to maintain neurological integrity-is efficacious as a therapy for Alzheimer's disease. Several factors key to the debate, include (1) which of the eight naturally-occurring vitamin E forms should be used; (2) how combination treatments affect vitamin E efficacy; and (3) safety concerns that most-recently resurfaced after the results of the Selenium and vitamin E Cancer prevention trial SELECT prostate cancer trial. However, with the advent of new genetic technologies and identifications of vitamin E-modulating single nucleotide polymorphisms (SNPs), we propose that clinical trials addressing the question "Is vitamin E an effective treatment for Alzheimer's disease" should consider a more focused and personalized medicine approach to designing experiments. An individual's naturally-occurring SNP variants may indeed influence vitamin E's therapeutic effect on Alzheimer's disease.

4.
Bioorg Med Chem ; 24(12): 2754-61, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27161877

RESUMEN

Previously prepared fluorescent derivatives of α-tocopherol have shown tremendous utility in both in vitro exploration of the mechanism of ligand transfer by the α-tocopherol transfer protein (α-TTP) and the intracellular transport of α-tocopherol in cells and tissues. We report here the synthesis of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) containing α-tocopherol analog having extended conjugation with an alkenyl thiophene group that extends the absorption and emission maxima to longer wavelengths (λex=571nm and λem=583nm). The final fluorophore thienyl-ene-BODIPY-α-tocopherol, 2, binds to recombinant human α-TTP with a Kd=8.7±1.1nM and is a suitable probe for monitoring the secretion of α-tocopherol from cultured Mcf7#189 cells.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/análisis , Animales , Compuestos de Boro/síntesis química , Compuestos de Boro/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Humanos , Unión Proteica , Ratas , alfa-Tocoferol/metabolismo
5.
Neurobiol Dis ; 84: 78-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25913028

RESUMEN

Alpha-tocopherol (vitamin E) is a plant-derived antioxidant that is essential for human health. Studies with humans and with animal models of vitamin E deficiency established the critical roles of the vitamin in protecting the central nervous system, and especially the cerebellum, from oxidative damage and motor coordination deficits. We review here the established roles of vitamin E in protecting cerebellar functions, as well as emerging data demonstrating the critical roles of alpha-tocopherol in preserving learning, memory and emotive responses. We also discuss the importance of vitamin E adequacy in seemingly unrelated neurological disorders.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Animales , Cognición/fisiología , Humanos , Enfermedades Neurodegenerativas/psicología , Vitamina E/química , Deficiencia de Vitamina E/metabolismo , Deficiencia de Vitamina E/psicología
6.
Annu Rev Nutr ; 33: 87-103, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23642196

RESUMEN

Vitamin E was identified almost a century ago as a botanical compound necessary for rodent reproduction. Decades of research since then established that of all members of the vitamin E family, α-tocopherol is selectively enriched in human tissues, and it is essential for human health. The major function of α-tocopherol is thought to be that of a lipid-soluble antioxidant that prevents oxidative damage to biological components. As such, α-tocopherol is necessary for numerous physiological processes such as permeability of lipid bilayers, cell adhesion, and gene expression. Inadequate levels of α-tocopherol interfere with cellular function and precipitate diseases, notably ones that affect the central nervous system. The extreme hydrophobicity of α-tocopherol poses a serious thermodynamic barrier for proper distribution of the vitamin to target tissues and cells. Although transport of the vitamin shares some steps with that of other lipids, selected tissues evolved dedicated transport mechanisms involving the α-tocopherol transfer protein (αTTP). The critical roles of this protein and its ligand are underscored by the debilitating pathologies that characterize human carriers of mutations in the TTPA gene.


Asunto(s)
Enfermedades del Sistema Nervioso Central/etiología , Sistema Nervioso Central/metabolismo , Deficiencia de Vitamina E/metabolismo , Vitamina E/metabolismo , Animales , Antioxidantes/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Sistema Nervioso Central/fisiopatología , Humanos , Vitamina E/uso terapéutico , Deficiencia de Vitamina E/etiología , Deficiencia de Vitamina E/fisiopatología
7.
Free Radic Biol Med ; 53(12): 2318-26, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23079030

RESUMEN

Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in most animal species. By controlling the secretion of vitamin E from the liver, the α-tocopherol transfer protein regulates whole-body distribution and levels of this vital nutrient. However, the mechanism(s) that regulates the expression of this protein is poorly understood. Here we report that transcription of the TTPA gene in immortalized human hepatocytes is induced by oxidative stress and by hypoxia, by agonists of the nuclear receptors PPARα and RXR, and by increased cAMP levels. The data show further that induction of TTPA transcription by oxidative stress is mediated by an already-present transcription factor and does not require de novo protein synthesis. Silencing of the cAMP response element-binding (CREB) transcription factor attenuated transcriptional responses of the TTPA gene to added peroxide, suggesting that CREB mediates responses of this gene to oxidative stress. Using a 1.9-kb proximal segment of the human TTPA promoter together with a site-directed mutagenesis approach, we found that single-nucleotide polymorphisms that are commonly found in healthy humans dramatically affect promoter activity. These observations suggest that oxidative stress and individual genetic makeup contribute to vitamin E homeostasis in humans. These findings may explain the variable responses to vitamin E supplementation observed in human clinical trials.


Asunto(s)
Proteínas Portadoras/genética , Estrés Oxidativo , Polimorfismo de Nucleótido Simple , Activación Transcripcional , Animales , Sitios de Unión , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Estudios de Asociación Genética , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Transcripción Genética
8.
PLoS One ; 7(10): e47402, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077608

RESUMEN

The hepatic α-tocopherol transfer protein (TTP) is required for optimal α-tocopherol bioavailability in humans; mutations in the human TTPA gene result in the heritable disorder ataxia with vitamin E deficiency (AVED, OMIM #277460). TTP is also expressed in mammalian uterine and placental cells and in the human embryonic yolk-sac, underscoring TTP's significance during fetal development. TTP and vitamin E are essential for productive pregnancy in rodents, but their precise physiological role in embryogenesis is unknown. We hypothesize that TTP is required to regulate delivery of α-tocopherol to critical target sites in the developing embryo. We tested to find if TTP is essential for proper vertebrate development, utilizing the zebrafish as a non-placental model. We verify that TTP is expressed in the adult zebrafish and its amino acid sequence is homologous to the human ortholog. We show that embryonic transcription of TTP mRNA increases >7-fold during the first 24 hours following fertilization. In situ hybridization demonstrates that Ttpa transcripts are localized in the developing brain, eyes and tail bud at 1-day post fertilization. Inhibiting TTP expression using oligonucleotide morpholinos results in severe malformations of the head and eyes in nearly all morpholino-injected embryos (88% compared with 5.6% in those injected with control morpholinos or 1.7% in non-injected embryos). We conclude that TTP is essential for early development of the vertebrate central nervous system.


Asunto(s)
Proteínas Portadoras/genética , Desarrollo Embrionario/genética , Vitamina E/metabolismo , Pez Cebra/crecimiento & desarrollo , alfa-Tocoferol/metabolismo , Animales , Proteínas Portadoras/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Vertebrados/genética , Vertebrados/crecimiento & desarrollo , Vitamina E/genética , Deficiencia de Vitamina E/genética , Deficiencia de Vitamina E/metabolismo , Pez Cebra/genética
9.
Hum Mol Genet ; 13(17): 1933-41, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15238504

RESUMEN

Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels is not well understood. Mouse Cftr mRNA shows strain-dependent expression differences that cannot be fully explained by variation at non-Cftr loci. Differences in tracheal and colonic expression appear to be due predominantly to elements linked to Cftr. Fifteen single nucleotide sequence variations were found within 1.4 kb 5' to the translation start site between the inbred lines A/J, C57BL/6J and 129/SvJ. In addition, 129/SvJ carries a 100 bp deletion relative to the other two strains. These variants were investigated by sequentially deleting 5' regions and measuring luciferase reporter activity from transfected, mouse epithelial cell lines derived from pancreatic duct, renal collecting duct, salivary gland and trachea. These assays identified a region between -524 and -834 in the C57BL/6J promoter, but not in A/J or 129/SvJ, capable of repressing expression. Sequence analysis and gel mobility shift assays suggest that the transcription factor MZF is involved in the strain-dependent effect. It was also apparent that several reporter constructs displayed expression differences between cell lines, possibly indicating the presence of tissue-specific elements.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación de la Expresión Génica/genética , Genes Reguladores/genética , Ratones/genética , Regiones Promotoras Genéticas/genética , Análisis de Varianza , Animales , Secuencia de Bases , Colon/metabolismo , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Células Epiteliales/metabolismo , Luciferasas/metabolismo , Ratones Endogámicos , Datos de Secuencia Molecular , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie , Tráquea/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...