Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 325: 103115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422725

RESUMEN

The development of new nanocomposites has a significant impact on modern instrumentation and analytical methods for chemical analysis. Due to their unique properties, carbon dots (CDs) and silver nanoparticles (AgNPs), distinguished by their unique physical, electrochemical, and optical properties, have captivated significant attention. Thus, combining AgNPs and CDs may produce Ag/CDs nanocomposites with improved performances than the individual material. This comprehensive review offers an in-depth exploration of the synthesis, formation mechanism, properties, and the recent surge in chemical and biological sensing applications of Ag/CDs with their sensing mechanisms. Detailed insights into synthesis methods to produce Ag/CDs are unveiled, followed by information on their physicochemical and optical properties. The crux of this review lies in its spotlight on the diverse landscape of chemical and biological sensing applications of Ag/CDs, with a particular focus on fluorescence, electrochemical, colorimetric, surface-enhanced Raman spectroscopy, and surface plasmon resonance sensing techniques. The elucidation of sensing mechanisms of the nanocomposites with various target analytes adds depth to the discussion. Finally, this review culminates with a concise summary and a glimpse into future perspectives of Ag/CDs aiming to achieve highly efficient and enduring Ag/CDs for various applications.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Puntos Cuánticos , Carbono/química , Plata/química , Nanopartículas del Metal/química , Puntos Cuánticos/química , Nanocompuestos/química
2.
Sci Rep ; 13(1): 16454, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777622

RESUMEN

Industrial effluents are a leading major threat for water contamination, subsequently which results in severe health associated risks. Hence, purifying wastewater before releasing into the water resources is essential to avoid contamination. In this study, ZnO/Cu-DPA nano-composites were prepared by altering the percentage of Cu-DPA (20%, 30%, 40%, and 50% which are denoted to be ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA) using a simple mechanical grinding process. Several spectroscopic studies were employed such as electron paramagnetic analysis (EPR), powdered X-ray diffractometer (PXRD), UV-Vis absorbance spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope to characterize these nano-composites. The photo-catalytic activities of the prepared nano-composites were studied by degrading MB under visible light irradiation. ZnO, ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA degradation efficiencies were determined to be 71.8, 78.5, 77.1, and 66.1%, respectively. Among the composite catalysts, the ZnO/20%Cu-DPA coupled system are demonstrated the best efficiency (87%) for photo-degradation of MB within 80 min when exposed to visible light. The ZnO/Cu-DPA nano-composites had a greater MB photodegradation efficiency than pristine ZnO owing to p-n heterojunction in the linked system. Under visible light irradiation, the ZnO/20%Cu-DPA catalysed the conversion of dissolved O2 to hydroxyl radicals (OH·), triggering the reduction of MB. This suggests that ·OH is the primary specific active radical involved in the photo-catalytic decomposition of MB. Furthermore, EPR analysis indicates the existence of ·OH in the photo-catalytic system. The proposed nano-composites (ZnO/20%Cu-DPA) reusability was investigated across three cycles as the most efficient photo-catalyst. The results show that, the ZnO/Cu-DPA nano-catalyst is a potential candidate for the remediation of dirty water.

3.
J Org Chem ; 81(2): 603-14, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26651353

RESUMEN

Three pyrene-oxadiazole derivatives were synthesized and characterized by optical, electrochemical, thermal, and theoretical investigations to obtain efficient multifunctional organic light emitting diode (OLED) materials. Synthesized molecules were used as emitters and electron transporters in three different device configurations, involving hole-injection/hole-blocking materials that showed good current and power efficiencies. To understand the underlying mechanisms involved in the application of these molecules as emitters and transporters, a detailed photophysical characterization of molecules 4-6 was carried out. The absorption, steady-state fluorescence, phosphorescence, fluorescence lifetime, and phosphorescence lifetime measurements were carried out. The high quantum yield and efficient reverse intersystem crossing leading to delayed fluorescence emission makes the molecule a good emitter, and the charge delocalization properties leading to excimer formation make them efficient electron transporters. Isoenergetic singlet and triplet states of the molecules make the reverse intersystem crossing feasible at room temperature even in the absence of thermal activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...