Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 11(1): 20355, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645842

RESUMEN

This trial evaluates whether nocturnal oxygen therapy (NOT) during a stay at 2048 m improves altitude-induced exercise intolerance in lowlanders with chronic obstructive pulmonary disease (COPD). 32 lowlanders with moderate to severe COPD, mean ± SD forced expiratory volume in the first second of expiration (FEV1) 54 ± 13% predicted, stayed for 2 days at 2048 m twice, once with NOT, once with placebo according to a randomized, crossover trial with a 2-week washout period at < 800 m in-between. Semi-supine, constant-load cycle exercise to exhaustion at 60% of maximal work-rate was performed at 490 m and after the first night at 2048 m. Endurance time was the primary outcome. Additional outcomes were cerebral tissue oxygenation (CTO), arterial blood gases and breath-by-breath measurements ( http://www.ClinicalTrials.gov NCT02150590). Mean ± SE endurance time at 490 m was 602 ± 65 s, at 2048 m after placebo 345 ± 62 s and at 2048 m after NOT 293 ± 60 s, respectively (P < 0.001 vs. 490 m). Mean difference (95%CI) NOT versus placebo was - 52 s (- 174 to 70), P = 0.401. End-exercise pulse oximetry (SpO2), CTO and minute ventilation ([Formula: see text]) at 490 m were: SpO2 92 ± 1%, CTO 65 ± 1%, [Formula: see text] 37.7 ± 2.0 L/min; at 2048 m with placebo: SpO2 85 ± 1%, CTO 61 ± 1%, [Formula: see text] 40.6 ± 2.0 L/min and with NOT: SpO2 84 ± 1%; CTO 61 ± 1%; [Formula: see text] 40.6 ± 2.0 L/min (P < 0.05, SpO2, CTO at 2048 m with placebo vs. 490 m; P = NS, NOT vs. placebo). Altitude-related hypoxemia and cerebral hypoxia impaired exercise endurance in patients with moderate to severe COPD and were not prevented by NOT.


Asunto(s)
Altitud , Ejercicio Físico , Terapia por Inhalación de Oxígeno , Oxígeno , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/administración & dosificación , Oxígeno/sangre , Rendimiento Físico Funcional , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/terapia
2.
Front Physiol ; 12: 689863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305642

RESUMEN

INTRODUCTION: We investigated whether nocturnal oxygen therapy (NOT) mitigates the increase of pulmonary artery pressure in patients during daytime with chronic obstructive pulmonary disease (COPD) traveling to altitude. METHODS: Patients with COPD living below 800 m underwent examinations at 490 m and during two sojourns at 2,048 m (with a washout period of 2 weeks < 800 m between altitude sojourns). During nights at altitude, patients received either NOT (3 L/min) or placebo (ambient air 3 L/min) via nasal cannula according to a randomized crossover design. The main outcomes were the tricuspid regurgitation pressure gradient (TRPG) measured by echocardiography on the second day at altitude (under ambient air) and various other echocardiographic measures of the right and left heart function. Patients fulfilling predefined safety criteria were withdrawn from the study. RESULTS: Twenty-three COPD patients [70% Global Initiative for Chronic Obstructive Lung Disease (GOLD) II/30% GOLD III, mean ± SD age 66 ± 5 years, FEV1 54% ± 13% predicted] were included in the per-protocol analysis. TRPG significantly increased when patients traveled to altitude (from low altitude 21.7 ± 5.2 mmHg to 2,048 m placebo 27.4 ± 7.3 mmHg and 2,048 m NOT 27.8 ± 8.3 mmHg) difference between interventions (mean difference 0.4 mmHg, 95% CI -2.1 to 3.0, p = 0.736). The tricuspid annular plane systolic excursion was significantly higher after NOT vs. placebo [2.6 ± 0.6 vs. 2.3 ± 0.4 cm, mean difference (95% confidence interval) 0.3 (0.1 - 0.5) cm, p = 0.005]. During visits to 2,048 m until 24 h after descent, eight patients (26%) using placebo and one (4%) using NOT had to be withdrawn because of altitude-related adverse health effects (p < 0.001). CONCLUSION: In lowlanders with COPD remaining free of clinically relevant altitude-related adverse health effects, changes in daytime pulmonary hemodynamics during a stay at high altitude were trivial and not modified by NOT. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier NCT02150590.

3.
Front Med (Lausanne) ; 8: 557369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732710

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) is associated with cardiovascular disease. We investigated whether sleeping at altitude increases nocturnal heart rate (HR) and other markers of cardiovascular risk or arrhythmias in lowlanders with COPD and whether this can be prevented by nocturnal oxygen therapy (NOT). Methods: Twenty-four COPD patients, with median age of 66 years and forced expiratory volume in 1 s (FEV1) 55% predicted, living <800 m underwent sleep studies at Zurich (490 m) and during 2 sojourns of 2 days each at St. Moritz (2,048 m) separated by 2-week washout at <800 m. During nights at 2,048 m, patients received either NOT (2,048 m NOT) or ambient air (2,048 m placebo) 3 L/min via nasal cannula according to a randomized, placebo-controlled crossover trial. Sleep studies comprised ECG and pulse oximetry to measure HR, rhythm, HR-adjusted QT interval (QTc), and mean oxygen saturation (SpO2). Results: In the first nights at 490 m, 2,048 m placebo, and 2,048 m NOT, medians (quartiles) of SpO2 were 92% (90; 94), 86% (83; 89), and 97% (95; 98) and of HR were 73 (66; 82), 82 (71; 85), and 78 bpm (67; 74) (P < 0.05 all respective comparisons). QTc increased from 417 ms (404; 439) at 490 m to 426 ms (405; 440) at 2,048 m placebo (P < 0.05) and was 420 ms (405; 440) at 2,048 m NOT (P = NS vs. 2,048 m placebo). The number of extrabeats and complex arrhythmias was similar over all conditions. Conclusions: While staying at 2,048 m, lowlanders with COPD experienced nocturnal hypoxemia in association with an increased HR and prolongation of the QTc interval. NOT significantly improved SpO2 and lowered HR, without changing QTc. Whether oxygen therapy would reduce HR and arrhythmia during longer altitude sojourns remains to be elucidated.

4.
Int J Chron Obstruct Pulmon Dis ; 16: 3503-3512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992358

RESUMEN

PURPOSE: Patients with chronic obstructive pulmonary disease (COPD) are particularly vulnerable to hypoxia-induced autonomic dysregulation. Hypoxemia is marked during sleep. In COPD, altitude exposure is associated with an increase in blood pressure (BP) and a decrease in baroreflex-sensitivity (BRS). Whether nocturnal oxygen therapy (NOT) may mitigate these cardiovascular autonomic changes in COPD at altitude is unknown. MATERIALS AND METHODS: In a randomized placebo-controlled cross-over trial, 32 patients with moderate-to-severe COPD living <800 m were subsequently allocated to NOT and placebo during acute exposure to altitude. Measurements were done at low altitude at 490 m and during two stays at 2048 m on NOT (3 L/min) and placebo (3 L/min, ambient air) via nasal cannula. Allocation and intervention sequences were randomized. Outcomes of interest were BP, BRS (from beat-to-beat BP measurement), BP variability (BPV), and heart rate. RESULTS: About 23/32 patients finished the trial per protocol (mean (SD) age 66 (5) y, FEV1 62 (14) % predicted) and 9/32 experienced altitude-related illnesses (8 vs 1, p < 0.05 placebo vs NOT). NOT significantly mitigated the altitude-induced increase in systolic BP compared to placebo (Δ median -5.8 [95% CI -22.2 to -1.4] mmHg, p = 0.05) but not diastolic BP (-3.5 [95% CI -12.6 to 3.0] mmHg; p = 0.21) or BPV. BRS at altitude was significantly higher in NOT than in placebo (1.7 [95% CI 0.3 to 3.4] ms/mmHg, p = 0.02). CONCLUSION: NOT may protect from hypoxia-induced autonomic dysregulation upon altitude exposure in COPD and thus protect from a relevant increase in BP and decrease in BRS. NOT may provide cardiovascular benefits in COPD during conditions of increased hypoxemia and may be considered in COPD travelling to altitude.


Asunto(s)
Altitud , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Presión Sanguínea , Estudios Cruzados , Humanos , Hipoxia/diagnóstico , Hipoxia/terapia , Oxígeno , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/terapia
5.
J Am Coll Health ; 69(5): 503-512, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-31702964

RESUMEN

OBJECTIVE: This study examined the relationships among meaning making, military stressor severity, and adjustment to college among student service members/veterans (SSM/Vs). PARTICIPANTS: Participants were 128 SSM/Vs enrolled in postsecondary education from April to June 2016. METHODS: Participants completed online self-report rating scales of stressor severity for their most stressful military event, meaning made of that stressor, and adjustment to college. RESULTS: Regression analyses revealed that made meaning of military stressors was associated with more positive academic, social, and emotional adjustment to college. Stressor severity was not associated with adjustment, nor did made meaning moderate the relationship between stressor severity and adjustment to college. CONCLUSION: These findings provide preliminary evidence that making meaning of stressful military experiences can promote academic, social, and emotional adjustment to college among SSM/Vs and has implications for incorporating meaning making strategies into university and clinical programs aimed at promoting adjustment to college in this population.


Asunto(s)
Personal Militar , Veteranos , Humanos , Autoinforme , Estudiantes , Universidades
6.
JAMA Netw Open ; 3(6): e207940, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32568400

RESUMEN

Importance: There are no established measures to prevent nocturnal breathing disturbances and other altitude-related adverse health effects (ARAHEs) among lowlanders with chronic obstructive pulmonary disease (COPD) traveling to high altitude. Objective: To evaluate whether nocturnal oxygen therapy (NOT) prevents nocturnal hypoxemia and breathing disturbances during the first night of a stay at 2048 m and reduces the incidence of ARAHEs. Design, Setting, and Participants: This randomized, placebo-controlled crossover trial was performed from January to October 2014 with 32 patients with COPD living below 800 m with forced expiratory volume in the first second of expiration (FEV1) between 30% and 80% predicted, pulse oximetry of at least 92%, not requiring oxygen therapy, and without history of sleep apnea. Evaluations were performed at the University Hospital Zurich (490 m, baseline) and during 2 stays of 2 days and nights each in a Swiss Alpine hotel at 2048 m while NOT or placebo treatment was administered in a randomized order. Between altitude sojourns, patients spent at least 2 weeks below 800 m. Data analysis was performed from January 1, 2015, to December 31, 2018. Intervention: During nights at 2048 m, NOT or placebo (room air) was administered at 3 L/min by nasal cannula. Main Outcomes and Measures: Coprimary outcomes were differences between NOT and placebo intervention in altitude-induced change in mean nocturnal oxygen saturation (SpO2) as measured by pulse oximetry and apnea-hypopnea index (AHI) measured by polysomnography during night 1 at 2048 m and analyzed according to the intention-to-treat principle. Further outcomes were the incidence of predefined ARAHE, other variables from polysomnography results and respiratory sleep studies in the 2 nights at 2048 m, clinical findings, and symptoms. Results: Of the 32 patients included, 17 (53%) were women, with a mean (SD) age of 65.6 (5.6) years and a mean (SD) FEV1 of 53.1% (13.2%) predicted. At 490 m, mean (SD) SpO2 was 92% (2%) and mean (SD) AHI was 21.6/h (22.2/h). At 2048 m with placebo, mean (SD) SpO2 was 86% (3%) and mean (SD) AHI was 34.9/h (20.7/h) (P < .001 for both comparisons). Compared with placebo, NOT increased SpO2 by a mean of 9 percentage points (95% CI, 8-11 percentage points; P < .001), decreased AHI by 19.7/h (95% CI, 11.4/h-27.9/h; P < .001), and improved subjective sleep quality measured on a visual analog scale by 9 percentage points (95% CI, 0-17 percentage points; P = .04). During visits to 2048 m or within 24 hours after descent, 8 patients (26%) using placebo and 1 (4%) using NOT experienced ARAHEs (P < .001). Conclusions and Relevance: Lowlanders with COPD experienced hypoxemia, sleep apnea, and impaired well-being when staying at 2048 m. Because NOT significantly mitigated these undesirable effects, patients with moderate to severe COPD may benefit from preventive NOT during high altitude travel. Trial Registration: ClinicalTrials.gov Identifier: NCT02150590.


Asunto(s)
Altitud , Hipoxia , Terapia por Inhalación de Oxígeno , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Síndromes de la Apnea del Sueño , Anciano , Femenino , Humanos , Hipoxia/complicaciones , Hipoxia/terapia , Masculino , Persona de Mediana Edad , Oximetría , Oxígeno/sangre , Síndromes de la Apnea del Sueño/complicaciones , Síndromes de la Apnea del Sueño/terapia , Viaje
7.
J Clin Psychol ; 76(5): 905-915, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31951280

RESUMEN

This paper addresses the unique characteristics of veterans and the role military culture continues to play for post-service veterans. We describe a series of programs developed to provide critically important assistance to current and recent student veterans by connecting them to a network of veteran peers and mentors. Through a discussion of psychological distress and healing, stigma, and the challenges of college, we hoped to galvanize student veterans to recognize the value of psychological well-being. We additionally offer suggestions, based on years of work with veterans, on the development of programs and the provision of clinical services for the veteran community.


Asunto(s)
Apoyo Social , Universidades , Veteranos/psicología , Adulto , Femenino , Humanos , Masculino , Servicios de Salud Mental , Mentores , Personal Militar , Grupo Paritario
8.
J Appl Physiol (1985) ; 128(1): 117-126, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751183

RESUMEN

Right-to-left shunts (RLS) are prevalent in patients with chronic obstructive pulmonary disease (COPD) and might exaggerate oxygen desaturation, especially at altitude. The aim of this study was to describe the prevalence of RLS in patients with COPD traveling to altitude and the effect of preventive dexamethasone. Lowlanders with COPD [Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades 1-2, oxygen saturation assessed by pulse oximetry (SpO2) >92%] were randomized to dexamethasone (4 mg bid) or placebo starting 24 h before ascent from 760 m and while staying at 3,100 m for 48 h. Saline-contrast echocardiography was performed at 760 m and after the first night at altitude. Of 87 patients (81 men, 6 women; mean ± SD age 57 ± 9 yr, forced expiratory volume in 1 s 89 ± 22% pred, SpO2 95 ± 2%), 39 were assigned to placebo and 48 to dexamethasone. In the placebo group, 19 patients (49%) had RLS, of which 13 were intracardiac. In the dexamethasone group 23 patients (48%) had RLS, of which 11 were intracardiac (P = 1.0 vs. dexamethasone). Eleven patients receiving placebo and 13 receiving dexamethasone developed new RLS at altitude (P = 0.011 for both changes, P = 0.411 between groups). RLS prevalence at 3,100 m was 30 (77%) in the placebo and 36 (75%) in the dexamethasone group (P = not significant). Development of RLS at altitude could be predicted at lowland by a higher resting pulmonary artery pressure, a lower arterial partial pressure of oxygen, and a greater oxygen desaturation during exercise but not by treatment allocation. Almost half of lowlanders with COPD revealed RLS near sea level, and this proportion significantly increased to about three-fourths when traveling to 3,100 m irrespective of dexamethasone prophylaxis.NEW & NOTEWORTHY The prevalence of intracardiac and intrapulmonary right-to-left shunts (RLS) at altitude in patients with chronic obstructive pulmonary disease (COPD) has not been studied so far. In a large cohort of patients with moderate COPD, our randomized trial showed that the prevalence of RLS increased from 48% at 760 m to 75% at 3,100 m in patients taking placebo. Preventive treatment with dexamethasone did not significantly reduce the altitude-induced recruitment of RLS. Development of RLS at 3,100 m could be predicted at 760 m by a higher resting pulmonary artery pressure and arterial partial pressure of oxygen and a more pronounced oxygen desaturation during exercise. Dexamethasone did not modify the RLS prevalence at 3,100 m.


Asunto(s)
Antiinflamatorios/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Dexametasona/uso terapéutico , Hipoxia/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Altitud , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Circulación Cerebrovascular , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología
9.
JAMA Netw Open ; 2(2): e190067, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30794302

RESUMEN

Importance: During mountain travel, patients with chronic obstructive pulmonary disease (COPD) are at risk of experiencing severe hypoxemia, in particular, during sleep. Objective: To evaluate whether preventive dexamethasone treatment improves nocturnal oxygenation in lowlanders with COPD at 3100 m. Design, Setting, and Participants: A randomized, placebo-controlled, double-blind, parallel trial was performed from May 1 to August 31, 2015, in 118 patients with COPD (forced expiratory volume in the first second of expiration [FEV1] >50% predicted, pulse oximetry at 760 m ≥92%) who were living at altitudes below 800 m. The study was conducted at a university hospital (760 m) and high-altitude clinic (3100 m) in Tuja-Ashu, Kyrgyz Republic. Patients underwent baseline evaluation at 760 m, were taken by bus to the clinic at 3100 m, and remained at the clinic for 2 days and nights. Participants were randomized 1:1 to receive either dexamethasone, 4 mg, orally twice daily or placebo starting 24 hours before ascent and while staying at 3100 m. Data analysis was performed from September 1, 2015, to December 31, 2016. Interventions: Dexamethasone, 4 mg, orally twice daily (dexamethasone total daily dose, 8 mg) or placebo starting 24 hours before ascent and while staying at 3100 m. Main Outcomes and Measures: Difference in altitude-induced change in nocturnal mean oxygen saturation measured by pulse oximetry (Spo2) during night 1 at 3100 m between patients receiving dexamethasone and those receiving placebo was the primary outcome and was analyzed according to the intention-to-treat principle. Other outcomes were apnea/hypopnea index (AHI) (mean number of apneas/hypopneas per hour of time in bed), subjective sleep quality measured by a visual analog scale (range, 0 [extremely bad] to 100 [excellent]), and clinical evaluations. Results: Among the 118 patients included, 18 (15.3%) were women; the median (interquartile range [IQR]) age was 58 (52-63) years; and FEV1 was 91% predicted (IQR, 73%-103%). In 58 patients receiving placebo, median nocturnal Spo2 at 760 m was 92% (IQR, 91%-93%) and AHI was 20.5 events/h (IQR, 12.3-48.1); during night 1 at 3100 m, Spo2 was 84% (IQR, 83%-85%) and AHI was 39.4 events/h (IQR, 19.3-66.2) (P < .001 both comparisons vs 760 m). In 60 patients receiving dexamethasone, Spo2 at 760 m was 92% (IQR, 91%-93%) and AHI was 25.9 events/h (IQR, 16.3-37.1); during night 1 at 3100 m, Spo2 was 86% (IQR, 84%-88%) (P < .001 vs 760 m) and AHI was 24.7 events/h (IQR, 13.2-33.7) (P = .99 vs 760 m). Altitude-induced decreases in Spo2 during night 1 were mitigated by dexamethasone vs placebo by a mean of 3% (95% CI, 2%-3%), and increases in AHI were reduced by 18.7 events/h (95% CI, 12.0-25.3). Similar effects were observed during night 2. Subjective sleep quality was improved with dexamethasone during night 2 by 12% (95% CI, 0%-23%). Sixteen (27.6%) patients using dexamethasone had asymptomatic hyperglycemia. Conclusions and Relevance: In lowlanders in Central Asia with COPD traveling to a high altitude, preventive dexamethasone treatment improved nocturnal oxygen saturation, sleep apnea, and subjective sleep quality. Trial Registration: ClinicalTrials.gov Identifier: NCT02450994.


Asunto(s)
Antiinflamatorios , Dexametasona , Montañismo/fisiología , Oxígeno/sangre , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Altitud , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dexametasona/farmacología , Dexametasona/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oximetría , Oxígeno/metabolismo , Consumo de Oxígeno/efectos de los fármacos
10.
Int J Cardiol ; 283: 159-164, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30638985

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) may predispose to symptomatic pulmonary hypertension at high altitude. We investigated hemodynamic changes in lowlanders with COPD ascending rapidly to 3100 m and evaluated whether preventive dexamethasone treatment would mitigate the altitude-induced increase in pulmonary artery pressure. METHODS: In this placebo-controlled, double-blind trial, non-hypercapnic COPD patients living <800 m, were randomized to receive either dexamethasone (8 mg/day) or placebo tablets one day before ascent from 760 m and during a 3-day-stay at 3100 m. Echocardiography was performed at 760 m and after the first night at 3100 m. The trans-tricuspid pressure gradient (RV/RA, main outcome), cardiac output (Q) by velocity-time integral of left ventricular outflow, indices of right and left heart function, blood gases and pulse-oximetry (SpO2) were compared between groups. RESULTS: 95 patients, 79 men, mean ±â€¯SD age 57 ±â€¯8y FEV1 89 ±â€¯21% pred, SpO2 95 ±â€¯2% were included in the analysis. In 52 patients receiving dexamethasone, RV/RA, Q and SpO2 at 760 and 3100 m were 19 ±â€¯5 mm Hg and 26 ±â€¯7 mm Hg, 4.9 ±â€¯0.7 and 5.7 ±â€¯1.1 l/min, SpO2 95 ±â€¯2% and 90 ±â€¯3% (P < 0.05 all changes). In 43 patients receiving placebo the corresponding values were 20 ±â€¯4 mm Hg and 31 ±â€¯9 mm Hg, 4.7 ±â€¯0.9 l/min and 95 ±â€¯3% and 89 ±â€¯3% (P < 0.05 all changes) between group differences of altitude-induced changes were (mean, 95% CI): RV/RA -4.8 (-7.7 to -1.8) mm Hg, Q 0.13 (-0.3 to 0.6) l/min and SpO2 1 (-1 to 2) %. CONCLUSIONS: In lowlanders with COPD travelling to 3100 m preventive dexamethasone treatment mitigates the altitude-induced rise in RV/RA potentially along with a reduced pulmonary vascular resistance and improved oxygenation.


Asunto(s)
Mal de Altura/prevención & control , Altitud , Dexametasona/administración & dosificación , Ventrículos Cardíacos/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Presión Esfenoidal Pulmonar/efectos de los fármacos , Administración Oral , Adulto , Anciano , Mal de Altura/etiología , Mal de Altura/fisiopatología , Análisis de los Gases de la Sangre , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Ecocardiografía , Femenino , Glucocorticoides/administración & dosificación , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Oximetría , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Presión Esfenoidal Pulmonar/fisiología , Resultado del Tratamiento , Adulto Joven
11.
Front Med (Lausanne) ; 6: 308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998729

RESUMEN

Introduction: The purpose of the study was to establish spirometric reference values for a Central Asian population of highlanders and lowlanders. Methods: Spirometries from a population-based cross-sectional study performed in 2013 in rural areas of Kyrgyzstan were analyzed. Using multivariable linear regression, Global Lung Function Initiative (GLI) equations were fitted separately for men and women, and altitude of residence (700-800 m, 1,900-2,800 m) to data from healthy, never-smoking Kyrgyz adults. The general GLI equation was applied: Predicted value = e a 0 + a 1 ×  ln ( Height ) + a 2 ×  ln ( Age ) + b 1 ×  ln ( Age 100 ) + b 2 ×  ln ( Age 100 ) 2 + b 3 ×  ln ( Age 100 ) 3              + b 4 ×  ln ( Age 100 ) 4 + b 5 ×  ln ( Age 100 ) 5 Results: Of 2,784 screened Kyrgyz, 448 healthy, non-smoking highlanders (379 females) and 505 lowlanders (368 females), aged 18-91 years, were included. Predicted FVC in Kyrgyz fit best with GLI "North-East Asians," predicted FEV1 fit best with GLI "Other/Mixed." Predicted FEV1/FVC was lower than that of all GLI categories. Age- and sex-adjusted mean FVC and FEV1 were higher in highlanders (+0.138l, +0.132l) than in lowlanders (P < 0.001, all comparisons), but FEV1/FVC was similar. Conclusion: We established prediction equations for an adult Central Asian population indicating that FVC is similar to GLI "North-East Asian" and FEV1/FVC is lower than in all other GLI population categories, consistent with a relatively smaller airway caliber. Central Asian highlanders have significantly greater dynamic lung volumes compared to lowlanders, which may be due to environmental and various other effects.

12.
Front Physiol ; 9: 752, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988503

RESUMEN

Objective: To evaluate the effects of acute exposure to high altitude and preventive dexamethasone treatment on postural control in patients with chronic obstructive pulmonary disease (COPD). Methods: In this randomized, double-blind parallel-group trial, 104 lowlanders with COPD GOLD 1-2 age 20-75 years, living near Bishkek (760 m), were randomized to receive either dexamethasone (2 × 4 mg/day p.o.) or placebo on the day before ascent and during a 2-day sojourn at Tuja-Ashu high altitude clinic (3100 m), Kyrgyzstan. Postural control was assessed with a Wii Balance BoardTM at 760 m and 1 day after arrival at 3100 m. Patients were instructed to stand immobile on both legs with eyes open during five tests of 30 s each, while the center of pressure path length (PL) was measured. Results: With ascent from 760 to 3100 m the PL increased in the placebo group from median (quartiles) 29.2 (25.8; 38.2) to 31.5 (27.3; 39.3) cm (P < 0.05); in the dexamethasone group the corresponding increase from 28.8 (22.8; 34.5) to 29.9 (25.2; 37.0) cm was not significant (P = 0.10). The mean difference (95% CI) between dexamethasone and placebo groups in altitude-induced changes (treatment effect) was -0.3 (-3.2 to 2.5) cm, (P = 0.41). Multivariable regression analysis confirmed a significant increase in PL with higher altitude (coefficient 1.6, 95% CI 0.2 to 3.1, P = 0.031) but no effect of dexamethasone was shown (coefficient -0.2, 95% CI -0.4 to 3.6, P = 0.925), even when controlled for several potential confounders. PL changes were related more to antero-posterior than lateral sway. Twenty-two of 104 patients had an altitude-related increase in the antero-posterior sway velocity of >25%, what has been associated with an increased risk of falls in previous studies. Conclusion: Lowlanders with COPD travelling from 760 to 3100 m revealed postural instability 24 h after arriving at high altitude, and this was not prevented by dexamethasone. Trial Registration: clinicaltrials.gov Identifier: NCT02450968.

13.
Chest ; 154(4): 788-797, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29909285

RESUMEN

BACKGROUND: Patients with COPD may experience acute mountain sickness (AMS) and other altitude-related adverse health effects (ARAHE) when traveling to high altitudes. This study evaluated whether dexamethasone, a drug used for the prevention of AMS in healthy individuals, would prevent AMS/ARAHE in patients with COPD. METHODS: This placebo-controlled, double-blind, parallel-design trial included patients with COPD and Global Initiative for Obstructive Lung Disease grade 1 to 2 who were living below 800 m. Patients were randomized to receive dexamethasone (8 mg/d) or placebo starting on the day before ascent and while staying in a high-altitude clinic at 3,100 m for 2 days. The primary outcome assessed during the altitude sojourn was the combined incidence of AMS/ARAHE, defined as an Environmental Symptoms Questionnaire cerebral score evaluating AMS ≥ 0.7 or ARAHE requiring descent or an intervention. RESULTS: In 60 patients randomized to receive dexamethasone (median [quartiles] age: 57 years [50; 60], FEV1 86% predicted [70; 104]; PaO2 at 760 m: 9.6 kPa [9.2; 10.0]), the incidence of AMS/ARAHE was 22% (13 of 60). In 58 patients randomized to receive placebo (age: 60 y [53; 64]; FEV1 94% predicted [76; 103]; PaO2: 10.0 kPa [9.1; 10.5]), the incidence of AMS/ARAHE was 24% (14 of 58) (χ2 statistic vs dexamethasone, P = .749). Dexamethasone mitigated the altitude-induced PaO2 reduction compared with placebo (mean between-group difference [95% CI], 0.4 kPa [0.0-0.8]; P = .028). CONCLUSIONS: In lowlanders with mild to moderate COPD, the incidence of AMS/ARAHE at 3,100 m was moderate and not reduced by dexamethasone treatment. Based on these findings, dexamethasone cannot be recommended for the prevention of AMS/ARAHE in patients with COPD undertaking high-altitude travel, although the drug mitigated the altitude-induced hypoxemia. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02450968; URL: www.clinicaltrials.gov.


Asunto(s)
Mal de Altura/prevención & control , Dexametasona/administración & dosificación , Glucocorticoides/administración & dosificación , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Aguda , Adulto , Anciano , Mal de Altura/fisiopatología , Método Doble Ciego , Esquema de Medicación , Femenino , Volumen Espiratorio Forzado/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Resultado del Tratamiento , Capacidad Vital/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...