Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273556

RESUMEN

Living in a warming world requires adaptations to altered annual temperature regimes. In Europe, spring is starting earlier, and the vegetation period is ending later in the year. These climatic changes are leading not only to shifts in distribution ranges of flora and fauna, but also to phenological shifts. Using long-term observation data of butterflies and moths collected during the past decades across northern Austria, we test for phenological shifts over time and changes in the number of generations. On average, Lepidoptera adults emerged earlier in the year and tended to extend their flight periods in autumn. Many species increased the annual number of generations. These changes were more pronounced at lower altitudes than at higher altitudes, leading to an altered phenological zonation. Our findings indicate that climate change does not only affect community composition but also the life history of insects. Increased activity and reproductive periods might alter Lepidoptera-host plant associations and food webs.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Temperatura , Estadios del Ciclo de Vida , Altitud , Cambio Climático , Estaciones del Año
2.
Oecologia ; 202(3): 577-587, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37486412

RESUMEN

Temperature increases and land-use changes induce altered annual activity periods of arthropods. However, sufficiently resolved long-term data sets (> 100 years) are mostly missing. We use a data set of longhorn beetle records (71 species) collected in Luxembourg 1864-2014. Increase of annual temperatures was significantly correlated with an earlier annual appearance. Forty-four species present before and after 1980 appeared on average 8.2 days earlier in the year in the more recent period. Since 1950, the estimated shift was 0.26 days per year. Increase of temperature in spring (March-June) preponed the first appearance of beetles by on average 9.6 days per 1 °C. We found significant changes in the composition of beetle communities, with a net gain in species richness during the last 40 years. Eleven species recorded only after 1997 were characterized by comparatively early annual appearance. Smaller beetles tended to appear earlier in the year in comparison to large-bodied species. Shifts in phenology did not correlate with species Red List status. As also demonstrated by our data, climate change in general affects insect phenologies and changes species composition. However, land-use change has taken place in parallel with climate change. Both aspects of global change are influencing the changes in longhorn beetle occurrences in Luxemburg in their combination. This might be most clearly reflected in the strong decrease of species with continental climate niches dwelling in old-growth deciduous forests that apparently are threatened by the loss of these habitats and increasing spring temperatures.


Asunto(s)
Escarabajos , Animales , Ecosistema , Bosques , Cambio Climático , Temperatura , Estaciones del Año
3.
Sci Total Environ ; 890: 164268, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37211129

RESUMEN

Climate change has a worldwide impact on biodiversity and ecosystem functions, in particular by causing shifts in species distributions and changes in species communities. Here, we analyse altitudinal range shifts of 30,604 lowland butterfly and burnet moth records from 119 species over the past seven decades across the federal state of Salzburg (northern Austria) spanning an altitudinal gradient of >2500 m. For each species, we compiled species-specific traits on their ecology, behaviour, and life-cycle. During the study period, the butterflies have shifted their average occurrence and also lower and upper occurrence limits >300 m uphill. This shift is particularly obvious for the last ten years. Habitat generalist and mobile species exhibited strongest and habitat specialist and sedentary species weakest shifts. Our results underline that the effects of climate change have a strong and currently increasing impact on the patterns of species distribution and local community composition. Hence, we confirm the observation that ubiquistic, mobile species with a broad ecological amplitude can cope better with environmental changes than specialist and sedentary species. Furthermore, the strong changes in land use in lowland areas might additionally enhanced this up-hill shift.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Ecosistema , Biodiversidad , Cambio Climático , Especificidad de la Especie
4.
Sci Rep ; 12(1): 17706, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271271

RESUMEN

Habitat destruction and deterioration of habitat quality caused a severe decline of biodiversity, such as insect diversity. In this study, we analyze insect diversity and biomass across agro-environments. We collected flying insects with 20 malaise traps across a landscape mosaic consisting of organic (eight traps) and conventional (four traps) farmland, as well as across agricultural land that has been recently converted from conventional to organic farming (eight traps). Sampling was conducted over 2 years, in 2019 and 2020, with in total 340 sampling events. We measured the dry weight of the captured organisms and identified species diversity by analyzing Operational Taxonomic Units (OTUs) and Barcode Index Numbers (BINs) via metabarcoding. The results obtained show temporal dynamics. The number of OTUs were always higher than the number of BINs. OTUs and BINs were moderately to highly correlated, while the number of OTUs and BINs were only moderately positively correlated with dry biomass. OTUs and BINs as well as biomass were highest in the recently transformed farmland if compared with pure organic and conventional farmland sites, which showed no significant differences in respect of insect diversity. OTU and BIN numbers but not the OTU/BIN ratio significantly decreased with increasing distance from the nearest forest fringe. The numbers of OTUs, BINs and the OTU/BIN proportion, as well as OTU and BIN/biomass proportions varied strongly over seasons, irrespective of agricultural practice. Based on our findings, we suggest to combine data on insect species richness and biomass measured over a period of time, to derive a largely complete and meaningful assessment of biodiversity for a specific region.


Asunto(s)
Agricultura , Biodiversidad , Animales , Biomasa , Insectos , Ecosistema
5.
Sci Total Environ ; 851(Pt 2): 158315, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030878

RESUMEN

Recent studies indicated severe decline of insect diversity and abundance across major parts of Central Europe. Theoretical studies showed that the drivers behind biodiversity loss vary considerably over time. However, these scenarios so far have been insufficiently approved by long-term and large-scale data. In this study we analysed the temporal trends of butterflies and Zygaenid moths across the federal state of Salzburg, northern Austria, from 1920 to 2019. Our study area covers a large variety of habitats and altitudes. Various changes of land use and intensification occurred during and shortly before our studied period, with a first wave of habitat destruction starting in the late 19th century, followed by the deterioration of habitat quality since the mid-20th century. We used 59,870 presence-only data of 168 butterfly and burnet moth species. Each of these species was classified according to ecological characteristics. Break point analyses for non-linear temporal trends in the community composition returned two major time windows. These time windows coincide with periods characterized by severe habitat destruction and the deterioration of habitat quality due to agricultural intensification. We found significant reductions of the proportion of species requiring specific habitats since 1920 and until today. We identified additional break points for species requiring high habitat qualities, endangered butterfly species, and sedentary species, particularly after a main break point in the 1960s. Our findings underline that, apart from habitat destruction, the deterioration of habitat quality is a main driver of biodiversity loss in general. Therefore, nature conservation should focus on maintaining the highest possible habitat quality.


Asunto(s)
Mariposas Diurnas , Mariposas Nocturnas , Animales , Biodiversidad , Ecosistema , Agricultura , Europa (Continente) , Conservación de los Recursos Naturales
6.
Ecology ; 103(8): e3725, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35416279

RESUMEN

Species abundance distributions (SADs) link species richness with species abundances and are an important tool in the quantitative analysis of ecological communities. Niche-based and sample-based SAD models predict different spatial scaling properties of SAD parameters. However, empirical research on SAD scaling properties is largely missing. Here we extracted percentage cover values of all occurring vascular plants as proxies of their abundance in 1725 10-m2 plots from the GrassPlot database, covering 47 regional data sets of 19 different grasslands and other open vegetation types of the Palaearctic biogeographic realm. For each plot, we fitted the Weibull distribution, a model that is able to effectively mimic other distributions like the log-series and lognormal, to the species-log abundance rank order distribution. We calculated the skewness and kurtosis of the empirical distributions and linked these moments, along with the shape and scale parameters of the Weibull distribution, to plot climatic and soil characteristics. The Weibull distribution provided excellent fits to grassland plant communities and identified four basic types of communities characterized by different degrees of dominance. Shape and scale parameter values of local communities on poorer soils were largely in accordance with log-series distributions. Proportions of subdominant species tended to be lower than predicted by the standard lognormal SAD. Successive accumulation of plots of the same vegetation type yielded nonlinear spatial scaling of SAD moments and Weibull parameters. This scaling was largely independent of environmental correlates and geographic plot position. Our findings caution against simple generalizations about the mechanisms that generate SADs. We argue that in grasslands, lognormal-type SADs tend to prevail within a wider range of environmental conditions, including more extreme habitats such as arid environments. In contrast, log-series distributions are mainly restricted to comparatively species-rich communities on humid and fertile soils.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biota , Suelo
7.
Ecol Evol ; 11(18): 12665-12675, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34594529

RESUMEN

Species community structures shape ecosystem functions, which are mostly stronger pronounced in intact than in degraded environments. Riparian forests in semiarid Africa provide important habitats for endangered plant and animal species and provide various ecosystem functions, that is, services to people settling along these streams. Most of these riparian forests are severely disturbed by human activities and dominated by invasive exotic plant species in the meanwhile. Thus, ecosystem functions are negatively influenced. While most studies have analyzed a specific metric to measure the degree of ecosystem function, little is known about how strongly different ecosystem functions respond to anthropogenic disturbances in parallel. In this study, we analyzed a set of four proxies of ecosystem functions, ground-dwelling arthropod abundances, pollination, seed dispersal, and predation, along a highly disturbed riparian forest in southeastern Kenya. We assessed the land cover and land use manually and with an Unmanned Aerial Vehicle. Our data show that ecosystem functions respond differently to vegetation cover, human disturbances, and the availability of the invasive exotic shrub Lantana camara. The occurrence of representatives from the groups Saltatoria and Formicidae profits from heterogeneous habitat structures and natural riparian forest, while representatives of the Araneae profit from high proportion of agricultural fields. In general, predation is higher in mixed land use and natural riparian forest, while pollination and seed dispersal showed no significant trend in regard on land coverage. Along with this, predation also increased with rising proportion of natural riparian forest, while the proportion of agricultural land negatively affects predation, but in parallel showed a slightly significant positive trend with seed dispersal. Human disturbances and the occurrence of the invasive exotic L. camara shrub did not significantly affect our metrics of ecosystem functioning, except of the negative impact of human disturbances on pollinators. In conclusion, our results underpin that ecosystem functions respond highly variable and individually to environmental changes.

8.
Sci Rep ; 11(1): 14382, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257364

RESUMEN

Climate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species' specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


Asunto(s)
Mariposas Diurnas , Cambio Climático , Altitud , Animales , Biodiversidad
9.
Sci Rep ; 11(1): 15103, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301981

RESUMEN

Species community structures respond strongly to habitat changes. These are either driven by nature or human activities. The biota of East African drylands responds highly sensitively to natural and anthropogenic impacts. Thus, seasonality strongly influences resource availability in a cyclic manner during the year, with cyclic appearance of the different developmental stages of invertebrates, while man-made landscape transformations profoundly and permanently modify habitat structures and, as a consequence, species communities. Butterflies are an excellent model group for the study of the effects of seasonality, and to test for biodiversity responses to anthropogenic activities such as habitat modification, degradation and destruction. We performed transect counts of adult butterflies in riparian forests and their adjoining areas, either dry savannahs with occasional pasturing (i.e. near-natural status) or farmland areas with fields, gardens and settlements (i.e. highly degraded status with lack of original vegetation). Transects were set along the river beds as well as at 250 m and 500 m distances parallel to these rivers, with eight transects per distance class and site (i.e. 48 transects in total). We recorded habitat structures for each transect. Counts were conducted during the dry and the rainy season, with 16 repetitions for each single transect, i.e. eight per season and transect. We compiled trait data on morphology, geographic distribution, ecology, behaviour, and life-history for all butterfly species encountered. Our results show higher species richness and numbers of individuals in farmland transects compared with the savannah region. Seasonal fluctuations of the detectable species abundances between the rainy and dry season were severe. These fluctuations were much more pronounced for the savannah than the farmland area, i.e. was buffered by human activities. Farmland and savannah support two distinct butterfly communities, with generalist species being more common in the farmland communities. Strict habitat associations were comparatively weak and typical dry savannah and riparian forest species were not clearly restricted to the near natural landscape.


Asunto(s)
Mariposas Diurnas/fisiología , África Oriental , Animales , Biodiversidad , Ecosistema , Bosques , Estaciones del Año
10.
Front Zool ; 18(1): 34, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187502

RESUMEN

Warm-adapted species survived the cold stages of the past glacial-interglacial cycles in southern European peninsulas and recolonized major parts of Central and Northern Europe in the wake of postglacial warming. However, many of the genetic lineages which differentiated within these refugia predate even the Pleistocene. One of these refugia is the Italian Peninsula with its surrounding islands. In this meta-analysis, we compiled phylogeographic patterns of multiple species across this region. We transformed existing geographic information on 78 animal and plant species (with a total of 471 genetic lineages) within 17 predefined areas into presence/absence matrices. We elaborated three matrices: (i) only old lineages exclusively distinguished by deep splits, (ii) only young lineages distinguished by shallow (i.e. recent) splits, and (iii) presence/absence of the respective species. To infer biogeographic relationships between the predefined areas, we performed bootstrapped neighbour joining cluster analyses on these three matrices. In addition, we reviewed the geological history of Italy to identify causes of the observed biogeographic patterns. We found Sardinia and Corsica to be biogeographically closely linked with each other, and that they diverge strongly from all other regions. Sicily also diverges strongly from all other regions, while the intra-island differentiation was comparatively low. On the Italian mainland, Calabria exhibited the most pronounced biogeographic differentiation, often with several lineages present, resulting from old vicariance events within the region. Furthermore, southern Apulia and the Po Plain with adjoining areas of northern peninsular Italy displayed considerable distinctiveness. Admixture prevailed in the areas between these three regions. The ancient isolation of Sicily, as well as Sardinia plus Corsica, resulted in endemic lineages with only moderate recent exchange with adjacent mainland regions. Pronounced diversification occurs within the Italian Peninsula. The complex tectonic activities, such as shifting (micro)plates, submergence of major parts of peninsular Italy with the genesis of numerous Pliocene islands, in combination with the climatic cycles during the Pleistocene have most likely generated the current biogeographic pattern of species. Immigrations from the Balkan Peninsula into northern Italy partly accounted for the distinctiveness of this region.

11.
Ecol Evol ; 10(9): 4009-4020, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489627

RESUMEN

The number of insect species and insect abundances decreased severely during the past decades over major parts of Central Europe. Previous studies documented declines of species richness, abundances, shifts in species composition, and decreasing biomass of flying insects. In this study, we present a standardized approach to quantitatively and qualitatively assess insect diversity, biomass, and the abundance of taxa, in parallel. We applied two methods: Malaise traps, and automated and active light trapping. Sampling was conducted from April to October 2018 in southern Germany, at four sites representing conventional and organic farming. Bulk samples obtained from Malaise traps were further analyzed using DNA metabarcoding. Larger moths (Macroheterocera) collected with light trapping were further classified according to their degree of endangerment. Our methods provide valuable quantitative and qualitative data. Our results indicate more biomass and higher species richness, as well as twice the number of Red List lepidopterans in organic farmland than in conventional farmland. This combination of sampling methods with subsequent DNA metabarcoding and assignments of individuals according depending on ecological characteristics and the degree of endangerment allows to evaluate the status of landscapes and represents a suitable setup for large-scale long-term insect monitoring across Central Europe, and elsewhere.

12.
J Insect Conserv ; 24(1): 175-185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089639

RESUMEN

Vineyard inter-rows are important biodiversity hotspots within agricultural landscapes, especially when they are covered with vegetation. However, little is known on the effects to management intensity on a broad range of surface-dwelling invertebrates and their interaction with vegetation. We assessed the diversity and activity density of ants, beetles, millipedes, mites, spiders, springtails and woodlice using pitfall traps in vineyards with either high management intensity (HI) consisting of frequently tilled inter-rows or low management intensity (LO) with alternating tillage in every second inter-row. The study was performed in the Târnave wine region in Central Romania. We wanted to know whether, (i) vineyard management intensity affects the diversity of plants and invertebrates, and (ii) local habitat characteristics affect species richness of different functional guilds and taxa. Species richness of some invertebrate taxa (Coleoptera, Araneae, Formicidae) did significantly differ between HI and LO vineyards. Only phytophages (some Coleoptera) increased in species richness and activity density with vegetation cover. Vineyard soil properties (organic matter content, pH, P, and K) did not significantly differ between HI and LO vineyards. We conclude that vineyard inter-row management can affect both the conservation of biodiversity and the provision of biodiversity-driven ecosystem services.

13.
Sci Total Environ ; 702: 134503, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726342

RESUMEN

As populations of White Stork Ciconia ciconia have decreased at different rates in Europe, the specific environmental drivers that influence breeding success are a matter of controversy. Here we use body size, blood, and environmental data of a total of 1226 stork nestlings of different ages from a total of 363 nests in three different habitats (meadows, forest-edges, open agricultural landscapes) in S-W Poland to ask whether: 1) natural grassland environments increase the reproductive output in comparison with agricultural landscapes, 2) nestlings from agricultural landscapes differ in health status from nestlings in more natural habitats, 3) differences in environmental stress translate into respective differences in reproductive output and health status of nestlings. There was no significant difference in age corrected body mass and in the temporal increase in nestling mass between the study sites. Clutch sizes were highest and age corrected total clutch mass lowest at the meadow sites while agricultural and woodland sites did not significantly differ. Hemoglobin and red blood cell content were lowest and white blood cell and blood antioxidant concentrations were highest in the meadows indicating higher degrees of environmental stressors. These blood parameters varied strongly among study years. Our study does not confirm that agricultural landscapes are less suited for stork breeding success. We even find some indication of a better health status of nestlings in agricultural environments that might compensate smaller clutch sizes. Our data indicate that reproductive output is multifaceted. As we found some indication of a trade-off between clutch size and health status we argue that only multiple metrics of reproductive success are able to assess the long-term effect of habitat choice on fitness.


Asunto(s)
Agricultura , Aves/fisiología , Ecosistema , Monitoreo del Ambiente , Reproducción , Animales , Femenino , Masculino , Polonia
14.
Sci Rep ; 9(1): 14921, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624369

RESUMEN

Current studies have shown a severe general decline in insect species diversity, their abundance, and a biomass reduction of flying insects. Most of previous studies have been performed at single sites, or were spatially restricted at the landscape level. In this study, we analyse trends of species richness and shifts in species composition of butterflies and burnet moth species across the federal state of Baden-Württemberg in south-western Germany, covering an area of 35,750 km2. The data set consists of 233,474 records and covers a period from 1750 until today. We grouped species according to their species´ specific functional traits and analyse how species with different habitat requirements and behaviour respond to land-use changes over time. Our data document a significant loss of relative abundance for most species, especially since the 1950s until today. Species demanding specific habitat requirements are more seriously suffering under this trend than generalists. This in particular affects taxa adapted to extensively used xerothermic grasslands, bogs or other habitats maintained by traditional low-productivity agricultural practices of the past. Our data indicate large-scale decline in relative abundance of many butterfly and burnet moth species, which happened in particular during the past few decades.


Asunto(s)
Distribución Animal , Mariposas Diurnas/fisiología , Conservación de los Recursos Naturales , Mariposas Nocturnas/fisiología , Agricultura , Animales , Biodiversidad , Conjuntos de Datos como Asunto , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Alemania , Pradera , Dinámica Poblacional/estadística & datos numéricos , Dinámica Poblacional/tendencias
15.
Sci Rep ; 9(1): 5586, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944343

RESUMEN

Species composition strongly depends on time, place and resources. In this context, semi-natural grasslands belong to the most species-rich habitats of Europe, and succession may eventually cause local extinction of typical grassland species, but conversely increase species richness due to habitat diversification. Here, we analyse potential effects of succession of calcareous grasslands on moths. Our studied community, assessed over three decades in south-eastern Germany, comprised >1000 species. We compiled data on the ecology of each of these species, considering the larval and adult stages. We assigned Ellenberg indicator values to each main larval food plant species used by these lepidopterans. Changes in the community means of these indicators were applied to test for possible consequences of the changes in habitat structure and quality. Our data revealed increasing multifunctionality of community structure, higher variability of habitat association over time, the appearance of range expanding species, but also local extinction of various typical grassland moth species. These shifts in species composition mirror effects of succession, which frequently transform previously homogenous semi-natural grasslands into a heterogeneous habitat mosaic.


Asunto(s)
Mariposas Nocturnas/fisiología , Animales , Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Alemania , Pradera
16.
Ecology ; 100(4): e02623, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30644544

RESUMEN

Recent studies have highlighted the importance of higher-order competitive interactions in stabilizing population dynamics in multi-species communities. But how does the structure of competitive hierarchies affect population dynamics and extinction processes? We tackled this important question by using spatially explicit simulations of ecological drift (10 species in a homogeneous landscape of 64 patches) in which birth rates were influenced by interspecific competition. Specifically, we examined how transitive (linear pecking orders) and intransitive (pecking orders with loops) competitive hierarchies affected extinction rates and population dynamics in simulated communities through time. In comparison to a pure neutral model, an ecological drift model including transitive competition increased extinction rates, caused synchronous density-dependent population fluctuations, and generated a white-noise distribution of population sizes. In contrast, the drift model with intransitive competitive interactions decreased extinctions rates, caused asynchronous (compensatory) density-dependent population fluctuations, and generated a brown noise distribution of population sizes. We also explored the effect on community stability of more complex patterns of competitive interactions in which pairwise competitive relationships were assigned probabilistically. These probabilistic competition models also generated density-dependent trajectories and a brown noise distribution of population sizes. However, extinction rates and the degree of population synchrony were comparable to those observed in purely neutral communities. Collectively, our results confirm that intransitive competition has a strong and stabilizing effect on local populations in species-poor communities. This effect wanes with increasing species richness. Empirical assemblages characterized by brown spectral noise, density-dependent regulation, and asynchronous (compensatory) population fluctuations may indicate a signature of intransitive competitive interactions.


Asunto(s)
Ecología , Modelos Biológicos , Ecosistema , Modelos Teóricos , Densidad de Población , Dinámica Poblacional
17.
Sci Rep ; 8(1): 17425, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479354

RESUMEN

Contrasting trophic theories of island biogeography try to link spatial patterns in species distribution and richness with dietary preferences, arguing that the spatial turnover of species among habitat patches changes with trophic rank causing a systematic change in the proportion of plants, herbivores, and predators across habitats of different size. Here we test these predictions using quantitative surveys of plants, spiders, and herbivores as well as of omnivorous and predatory ground beetles on undisturbed Polish lake islands. We found decreased proportions of predators and habitat generalists on larger islands. Environmental niches and niche overlap were highest in predators. Variability in environmental niche width among species increased at higher trophic levels. Our results confirm models that predict a decrease in spatial species turnover (ß-diversity) with increasing trophic level. We speculate that the major trigger for these differences is a reduced dispersal ability in plants at basal trophic ranks when compared to higher trophic levels.


Asunto(s)
Biodiversidad , Escarabajos/fisiología , Cadena Alimentaria , Islas , Arañas/fisiología , Animales , Herbivoria , Lagos , Fenómenos Fisiológicos de las Plantas , Conducta Predatoria
18.
BMC Evol Biol ; 18(1): 112, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016955

RESUMEN

BACKGROUND: Spatial isolation, diverging environmental conditions and social structures may lead to the differentiation of various traits, e.g. molecules, morphology and behaviour. Bird calls may provide important information on effects of geographic isolation and may reflect diverging ecological conditions related to altitude. Furthermore, bird calls are strongly shaped by the social behaviour of species. The Kenyan endemic bird Hinde's Babbler, Turdoides hindei, is a cooperative breeder existing in distinct family groups. The species occurs in five isolated population groups at different altitudes across its distribution range in south-eastern Kenya. With this model species we test for potential effects of geographic isolation, diverging altitudes, and social structures. We recorded and analysed contact and alarm calls of T. hindei, including its entire distribution range and all existing population groups. RESULTS: Our data show significant differentiation of call characteristics among population groups across the species' distribution range. This differentiation is correlated with geographical distance, but also with altitude. We also found strong call differentiation among neighbouring family groups. Call differentiation of contact calls was comparatively high in comparison to alarm calls, which showed a lower degree of divergence. CONCLUSION: Our data show that call differentiation is governed by geographic isolation as well as altitude. Diverging degrees of call differentiation in contact and alarm calls suggests that both call types are under different selective pressures. Alarm calls are required to be understood by all members of the species across the entire distribution range and thus call differentiation is lower. In contrast, contact calls are more specific and differ even among neighbouring families supporting the maintenance of distinct bird families and groups.


Asunto(s)
Evolución Biológica , Passeriformes/fisiología , Conducta Social , Vocalización Animal/fisiología , Altitud , Análisis de Varianza , Animales , Ecosistema , Geografía , Kenia , Análisis de Componente Principal
19.
mBio ; 9(2)2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666290

RESUMEN

The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus.IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology.


Asunto(s)
Reservorios de Enfermedades/virología , Heces/virología , Virus/clasificación , Virus/aislamiento & purificación , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ciudad de Nueva York , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
20.
PLoS One ; 13(1): e0189638, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293538

RESUMEN

The theory of island biogeography predicts the effects of habitat isolation and size on species richness, community assembly, and the persistence of species. Various studies showed that habitat conditions and the ecology of species are also of relevance in explaining community assembly. Geographically isolated habitats like caves with rather constant environmental conditions provide models to test for the relevance of the above described variables. In this study we analysed springtails living in karst caves of the Romanian Carpathians and Dobrogea region. We considered phylogenetic relatedness, habitat and species characteristics to identify the relevant drivers of community assembly. Our data show that species richness of single caves is low. Neither phylogenetic relatedness nor habitat filtering and competitive interactions seem to shape species composition or to affect species richness. We found that glacial-interglacial cycles with subsequent range contractions and expansions might have led to independent and multiple colonisations of caves. Furthermore, single caves might have acted as refugia and thus might have provided the prerequisite for distinct evolution processes, leading to a high level of endemicity of these animal species.


Asunto(s)
Artrópodos/clasificación , Animales , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...