Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 222(Pt 22)2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722971

RESUMEN

The critical O2 tension (Pcrit) is the lowest PO2  at which an animal can maintain some benchmark rate of O2 uptake (MO2 ). This PO2  has long served as a comparator of hypoxia tolerance in fishes and aquatic invertebrates, but its usefulness in this role, particularly when applied to fishes, has recently been questioned. We believe that Pcrit remains a useful comparator of hypoxia tolerance provided it is determined using the proper methods and hypoxia tolerance is clearly defined. Here, we review the available methods for each of the three steps of Pcrit determination: (1) measuring the most appropriate benchmark MO2  state for Pcrit determination (MO2,std, the MO2  required to support standard metabolic rate); (2) reducing water PO2 ; and (3) calculating Pcrit from the MO2  versus PO2  curve. We make suggestions on best practices for each step and for how to report Pcrit results to maximize their comparative value. We also discuss the concept of hypoxia tolerance and how Pcrit relates to a fish's overall hypoxia tolerance. When appropriate methods are used, Pcrit provides useful comparative physiological and ecological information about the aerobic contributions to a fish's hypoxic survival. When paired with other hypoxia-related physiological measurements (e.g. lactate accumulation, calorimetry-based measurements of metabolic depression, loss-of-equilibrium experiments), Pcrit contributes to a comprehensive understanding of how a fish combines aerobic metabolism, anaerobic metabolism and metabolic depression in an overall strategy for hypoxia tolerance.


Asunto(s)
Peces/metabolismo , Consumo de Oxígeno/fisiología , Oxígeno/sangre , Animales , Metabolismo Basal , Peces/fisiología , Hipoxia/metabolismo , Oxígeno/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-31103708

RESUMEN

In this essay, we question the sole use of mg/L (ppm) and the term DO (dissolved oxygen) when referring to oxygen supply in water, and discuss reasons for also reporting the partial pressure of oxygen (PO2). Oxygen moves from water into organisms by diffusion only, and the rate and direction of diffusion is solely dependent upon partial pressure gradients, not concentration gradients. However, the amount of oxygen moved into an organism is both a function of DO and PO2. Therefore, to have physiological and ecological relevance, the presence of oxygen in water, when reported as DO, should also include PO2.


Asunto(s)
Consumo de Oxígeno , Oxígeno/metabolismo , Presión Parcial , Animales , Oxígeno/química , Agua/química
4.
Ecol Evol ; 8(11): 5815-5827, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938095

RESUMEN

Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long-term studies of phenology in ectothermic amniotes have been published. We test for climate-altered phenology using long-term studies (10-36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon, Malaclemys, Sternotherus, and Trachemys). Nesting season initiation occurs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evidence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change.

5.
Artículo en Inglés | MEDLINE | ID: mdl-23376540

RESUMEN

Bennett and Dawson (1976) presented an analysis of the relationship of metabolic rate (MR) and body mass among turtles, based on 10 studies, but unlike most of other groups of ectotherms, there has been no update to include the many later reports on turtles. Here I present a review of the data on turtle metabolic rates at 20, 25, and 30°C, along with regression equations and graphical analyses from a large number of studies. Two generalities emerge: (1) reported metabolic rates for sea turtles are higher than for other chelonians, although it is not certain whether this is an intrinsic characteristic of sea turtles or an artifact related to experimental conditions (such as greater activity of sea turtles in metabolic chambers and the fact that a number of studies were done with the turtles out of water), and (2) the slopes of the log-log plots of metabolic rate (MR) vs. body mass [b in the allometric equation MR=a(mass)(b)] are mostly lower than previously reported in smaller studies.


Asunto(s)
Tortugas/metabolismo , Animales , Metabolismo Basal , Índice de Masa Corporal , Temperatura
6.
Biol Rev Camb Philos Soc ; 87(3): 583-601, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22151821

RESUMEN

The giant salamanders are aquatic and paedomorphic urodeles including the genera Andrias and Cryptobranchus (Cryptobranchidae), Amphiuma (Amphiumidae), Siren (Sirenidae), and Necturus (Proteidae, of which only N. maculosus is considered 'a giant'). Species in the genera Cryptobranchus and Necturus are considered aquatic salamanders well adapted for breathing water, poorly adapted for breathing air, and with limited abilities to compensate acid-base disturbances. As such, they are water-breathing animals with a somewhat fish-like respiratory and acid-base physiology, whose habitat selection is limited to waters that do not typically become hypoxic or hypercarbic (although this assertion has been questioned for N. maculosus). Siren and Amphiuma species, by contrast, are dependent upon air-breathing, have excellent lungs, inefficient (Siren) or no (Amphiuma) gills, and are obligate air-breathers with an acid-base status more similar to that of terrestrial tetrapods. As such, they can be considered to be air-breathing animals that live in water. Their response to the aquatic hypercarbia that they often encounter is to maintain intracellular pH (pH(i) ) and abandon extracellular pH regulation, a process that has been referred to as preferential pH(i) regulation. The acid-base status of some present-day tropical air-breathing fishes, and of Siren and Amphiuma, suggests that the acid-base transition from a low PCO(2) -low [] system typical of water-breathing fishes to the high PCO(2) -high [] systems of terrestrial tetrapods may have been completed before emergence onto land, and likely occurred in habitats that were typically both hypoxic and hypercarbic.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Metabolismo Energético/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Urodelos/metabolismo , Animales
7.
J Exp Zool A Ecol Genet Physiol ; 313(6): 311-27, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20535765

RESUMEN

Successful overwintering under ice by an air-breathing vertebrate requires either effective aquatic respiration if dissolved O(2) is available or the capacity for prolonged anaerobic metabolism if O(2) supplies are limiting. Frogs can remain aerobic for many weeks when submerged at low temperature, even at water PO(2) as low as 30 mmHg, but are unable to survive even 1 week in anoxic water. Fuel reserves of hibernating frogs limit aerobic submergence, whereas acidosis may limit anoxic submergence. Freshwater turtles can also satisfy all or most of their O(2) needs in well-aerated water at low temperature by aquatic respiration, but certain species, in particular painted and snapping turtles, can also survive for up to 4-5 months without O(2). Key adaptations of the painted turtles, and presumably snapping turtles, include metabolic depression and the exploitation of the shell and other bones to buffer lactic acid. As in frogs, glycogen and glucose are the only fuel sources during anoxia, and stores do not seem to be limiting in the painted turtle. Significant differences in anoxia tolerance exist among chelonian species that can be attributed, at least in part, to the magnitude of metabolic depression, the effectiveness of lactic acid buffering, and the size of glycogen stores.


Asunto(s)
Hibernación/fisiología , Hielo , Ranidae/fisiología , Tortugas/fisiología , Animales , Consumo de Oxígeno
8.
J Exp Zool A Ecol Genet Physiol ; 309(6): 297-379, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18484621

RESUMEN

Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions.


Asunto(s)
Animales Recién Nacidos/fisiología , Hibernación/fisiología , Tortugas/fisiología , Adaptación Fisiológica/fisiología , Animales , Regulación de la Temperatura Corporal/fisiología , Frío , Estaciones del Año
9.
Biol Rev Camb Philos Soc ; 83(2): 119-40, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18429765

RESUMEN

In cold-temperate climates, overwintering aquatic ranid frogs must survive prolonged periods of low temperature, often accompanied by low levels of dissolved oxygen. They must do so with the energy stores acquired prior to the onset of winter. Overwintering mortality is a significant factor in their life history, occasionally reaching 100% due to freezing and/or anoxia. Many species of northern ranid frogs overwinter in the tadpole stage, which increases survival during hypoxic episodes relative to adults, as well as allowing for larger sizes at metamorphosis. At temperatures below 5 degrees C, submerged ranid frogs are capable of acquiring adequate oxygen via cutaneous gas exchange over a wide range of ambient oxygen partial pressures (PO(2)), and possess numerous physiological and behavioural mechanisms that allow them to maintain normal rates of oxygen uptake across the skin at a relatively low PO(2). At levels of oxygen near and below the critical PO(2) that allows for aerobic metabolism, frogs must adopt biochemical mechanisms that act to minimise oxygen utilisation and assist in maintaining an aerobic state to survive overwintering. These mechanisms include alterations in mitochondrial metabolism and affinity, changes in membrane permeability, alterations in water balance, and reduction in cellular electrochemical gradients, all of which lead to an overall reduction in whole-animal metabolism. Winter energetic requirements are fueled by the energy stores in liver, muscle, and fat depots, which are likely to be sufficient when the water is cold and well oxygenated. However, under hypoxic conditions fat stores cannot be utilised efficiently and glycogen stores are used up rapidly due to recruitment of anaerobiosis. Since ranid frogs have minimal tolerance to anoxia, it is untenable to suggest that they spend a significant portion of the winter buried in anoxic mud, but instead utilise a suite of behavioural and physiological mechanisms geared to optimal survival in cold, hypoxic conditions.


Asunto(s)
Adaptación Fisiológica , Frío , Hibernación/fisiología , Oxígeno/metabolismo , Ranidae/fisiología , Aclimatación , Animales , Metabolismo Basal/fisiología , Metabolismo Energético/fisiología , Femenino , Hipoxia/veterinaria , Inmersión , Masculino , Ranidae/metabolismo , Especificidad de la Especie
10.
Biol Rev Camb Philos Soc ; 81(3): 339-67, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16700968

RESUMEN

Turtles are a small taxon that has nevertheless attracted much attention from biologists for centuries. However, a major portion of their life cycle has received relatively little attention until recently - namely what turtles are doing, and how they are doing it, during the winter. In the northern parts of their ranges in North America, turtles may spend more than half of their lives in an overwintering state. In this review, I emphasise the ecological aspects of overwintering among turtles, and consider how overwintering stresses affect the physiology, behaviour, distributions, and life histories of various species. Sea turtles are the only group of turtles that migrate extensively, and can therefore avoid northern winters. Nevertheless, each year a number of turtles, largely juveniles, are killed when trapped by cold fronts before they move to safer waters. Evidently this risk is an acceptable trade-off for the benefits to a population of inhabiting northern developmental habitats during the summer. Terrestrial turtles pass the winter underground, either in burrows that they excavate or that are preformed. These refugia must provide protection against desiccation and lethal freezing levels. Some burrows are extensive (tortoise genus Gopherus), while others are shallow, or the turtles may simply dig into the ground to a safe depth (turtle genus Terrapene). In the latter genus, freeze tolerance may play an adaptive role. Most non-marine aquatic turtles overwinter underwater, although Clemmys (Actinemys) marmorata routinely overwinters on land when it occurs in riverine habitats, Kinosternon subrubrum often overwinters on land, and several others may overwinter terrestrially on occasion, especially in more southern climates. For northern species that overwinter underwater, there are two physiological groupings, those that are anoxia-tolerant and those that are relatively anoxia-intolerant. All species fare well physiologically in water with a high partial pressure of oxygen (PO2). A lack of anoxia tolerance limits the types of habitats that a freshwater turtle may live in, since unlike sea turtles, they cannot travel long distances to hibernate. Hatchlings of some species of turtles spend their first winter in or below the nest cavity, while hatchlings of other species in the same area, including northern areas, emerge in the autumn and presumably hibernate underwater. All hatchlings are relatively anoxia-intolerant, and there are no studies to date of where hatchling turtles that do not overwinter in or below the nest cavity spend their first winter. Equally little is known of the ontogeny of anoxia tolerance, other than that adults of all species are more anoxia-tolerant than their hatchlings, probably because of their better ossified shells, which provide adults with more buffer reserves and a larger site in which to sequester lactate. The northern limits of turtles are most likely determined by reproductive limitations (time for egg-laying, incubation, and hatching) than by the rigors of hibernation. Mortality is typically lower in turtle populations during hibernation than it is during their active periods. However, episodic mortality events do occur during hibernation, due to freezing, prolonged anoxia, or predation.


Asunto(s)
Adaptación Fisiológica , Migración Animal/fisiología , Hibernación/fisiología , Tortugas/fisiología , Aclimatación/fisiología , Animales , Femenino , Congelación , Hipoxia/veterinaria , Masculino , Estaciones del Año , Especificidad de la Especie
11.
Artículo en Inglés | MEDLINE | ID: mdl-15471688

RESUMEN

Numerous aquatic reptiles and amphibians that typically breathe both air and water can remain fully aerobic in normoxic (aerated) water by taking up oxygen from the water via extrapulmonary avenues. Nevertheless, if air access is available, these animals do breathe air, however infrequently. We suggest that such air breathing does not serve an immediate gas exchange function under these conditions, nor is it necessarily related to buoyancy requirements, but serves to keep lungs inflated that would otherwise collapse during prolonged submergence. We also suggest that lung deflation is routine in hibernating aquatic reptiles and amphibians in the northern portions of their ranges, where ice cover prevents surfacing for extended periods.


Asunto(s)
Anfibios/fisiología , Pulmón/fisiología , Surfactantes Pulmonares/metabolismo , Ranidae/fisiología , Mecánica Respiratoria/fisiología , Urodelos/fisiología , Anfibios/anatomía & histología , Animales , Buceo , Branquias/fisiología , Presión Hidrostática , Pulmón/anatomía & histología , Fosfolípidos/metabolismo , Intercambio Gaseoso Pulmonar/fisiología , Surfactantes Pulmonares/química , Ranidae/anatomía & histología , Reptiles , Factores de Tiempo , Urodelos/anatomía & histología
12.
Physiol Biochem Zool ; 77(4): 619-30, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15449233

RESUMEN

We compared the physiological responses of latitudinal pairings of painted turtles submerged in normoxic and anoxic water at 3 degrees C: western painted turtles (Chrysemys picta bellii) from Wisconsin (WI) versus southern painted turtles (Chrysemys picta dorsalis) from Louisiana (LA), Arkansas (AR), and Alabama (AL), and eastern painted turtles (Chrysemys picta picta) from Connecticut (CT) versus C. p. picta from Georgia (GA). Turtles in normoxic water accumulated lactate, with C. p. bellii accumulating less than (20 mmol/L) the other groups (44-47 mmol/L), but with relatively minor acid-base and ionic disturbances. Chrysemys picta bellii had the lowest rate of lactate accumulation over the first 50 d in anoxic water (1.8 mmol/d vs. 2.1 for AR C. p. dorsalis, 2.4 mmol/d for GA C. p. picta, and 2.5 mmol/d for CT C. p. picta after 50 d and 2.6 mmol/d for AL C. p. dorsalis after 46 d). Northern turtles in both groups survive longer in anoxia than their southern counterparts. The diminished viability in C. p. dorsalis versus C. p. bellii can be partially explained by an increased rate of lactate accumulation and a decreased buffering capacity, but for the CT and GA C. p. picta comparison, only buffering capacity differences are seen to influence survivability.


Asunto(s)
Hibernación/fisiología , Hipoxia/fisiopatología , Ácido Láctico/sangre , Tortugas/fisiología , Análisis de Varianza , Animales , Análisis Químico de la Sangre , Centrifugación , Agua Dulce , Geografía , Concentración de Iones de Hidrógeno , Concentración Osmolar , Factores de Tiempo , Estados Unidos
13.
J Exp Biol ; 207(Pt 16): 2889-95, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15235017

RESUMEN

We submerged hatchling western painted turtles Chrysemys picta Schneider, snapping turtles Chelydra serpentina L. and map turtles Graptemys geographica Le Sueur in normoxic and anoxic water at 3 degrees C. Periodically, turtles were removed and whole-body [lactate] and [glycogen] were measured along with relative shell mass, shell water, and shell ash. We analyzed the shell for [Na+], [K+], total calcium, total magnesium, Pi and total CO2. All three species were able to tolerate long-term submergence in normoxic water without accumulating any lactate, indicating sufficient extrapulmonary O2 extraction to remain aerobic even after 150 days. Survival in anoxic water was 15 days in map turtles, 30 days in snapping turtles, and 40 days in painted turtles. Survival of hatchlings was only about one third the life of their adult conspecifics in anoxic water. Much of the decrease in survival was attributable to a dramatically lower shell-bone content (44% ash in adult painted turtles vs. 3% ash in hatchlings of all three species) and a smaller buffer content of bone (1.3 mmol g(-1) CO2 in adult painted turtles vs. 0.13-0.23 mmol g(-1) CO2 in hatchlings of the three species). The reduced survivability of turtle hatchlings in anoxic water requires that hatchlings either avoid aquatic hibernacula that may become severely hypoxic or anoxic (snapping turtles), or overwinter terrestrially (painted turtles and map turtles).


Asunto(s)
Agua Corporal/metabolismo , Glucógeno/metabolismo , Hibernación/fisiología , Ácido Láctico/metabolismo , Tortugas/metabolismo , Análisis de Varianza , Animales , Densidad Ósea/fisiología , Calcio/metabolismo , Dióxido de Carbono/metabolismo , Great Lakes Region , Inmersión , Magnesio/metabolismo , Fósforo/metabolismo , Espectrofotometría Atómica , Factores de Tiempo , Tortugas/fisiología
14.
Physiol Biochem Zool ; 77(1): 65-73, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15057718

RESUMEN

Canadian northern leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana) were acclimated to 3 degrees C and submerged in anoxic (0-5 mmHg) and normoxic (Po(2) approximately 158 mmHg) water. Periodic measurements of blood Po(2), Pco(2), and pH were made on samples taken anaerobically from subsets of each species. Blood plasma was analyzed for [Na(+)], [K(+)], [Cl(-)], [lactate], [glucose], total calcium, total magnesium, and osmolality. Blood hematocrit was determined, and plasma bicarbonate concentration was calculated. Both species died within 4 d of anoxic submergence. Anoxia intolerance would rule out hibernation in mud, which is anoxic. Both species survived long periods of normoxic submergence (R. pipiens, 125 d; R. catesbeiana, 150 d) with minimal changes in acid-base and ionic status. We conclude that ranid frogs require a hibernaculum where the water has a high enough Po(2) to drive cutaneous diffusion, allowing the frogs to extract enough O(2) to maintain aerobic metabolism, but that an ability to tolerate anoxia for several days may still be ecologically meaningful.


Asunto(s)
Hibernación/fisiología , Hipoxia/fisiopatología , Rana catesbeiana/fisiología , Rana pipiens/fisiología , Análisis de Varianza , Animales , Análisis Químico de la Sangre , Dióxido de Carbono/sangre , Concentración de Iones de Hidrógeno , Manitoba , Oxígeno/sangre , Quebec , Temperatura , Factores de Tiempo
15.
Physiol Biochem Zool ; 77(2): 232-41, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15095243

RESUMEN

We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.


Asunto(s)
Aclimatación/fisiología , Frío , Hipotermia Inducida , Oxígeno/sangre , Estaciones del Año , Tortugas/sangre , Equilibrio Ácido-Base/fisiología , Animales , Hematócrito , Hemoglobinas/metabolismo , Inmersión , Focalización Isoeléctrica , Oxígeno/metabolismo , Espectrofotometría , Temperatura , Tortugas/fisiología
16.
J Exp Zool A Comp Exp Biol ; 301(2): 169-76, 2004 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-14743516

RESUMEN

Rates of O(2) consumption (.VO(2)) were determined for adult northern leopard frogs (Rana pipiens) submerged at 3 degrees C at water PO(2)s (P(w)O(2)) ranging from 0-160 mmHg. The critical O(2) tension (P(c)) was 36.4 mmHg. Hematocrit and blood levels of PO(2), glucose, lactate, pH, [Na(+)], [K(+)], and osmolality were determined for frogs submerged for two days. Above a P(w)O(2) of 50 mmHg, blood PO(2) ranged from 1-7 mmHg, which was sufficient to allow the frogs to function entirely aerobically. Plasma [lactate] increased as P(w)O(2) fell below 50 mmHg, the increase preceding significant changes in any other variable, and apparently preceding a fall in .VO(2). Most other variables showed little or no change from those of air-breathing control animals, even during anoxia. We present an analysis of the importance of a large decrease in P(c) in permitting frogs to successfully overwinter in icebound ponds and of the factors that contribute to that decrease.


Asunto(s)
Hibernación/fisiología , Hipoxia/fisiopatología , Consumo de Oxígeno/fisiología , Rana pipiens/fisiología , Análisis de Varianza , Animales , Glucemia , Agua Dulce , Concentración de Iones de Hidrógeno , Ácido Láctico/sangre , Concentración Osmolar , Oxígeno/sangre
17.
Evolution ; 57(1): 119-28, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12643572

RESUMEN

The painted turtle, Chrysemys picta, is currently recognized as a continentally distributed polytypic species, ranging across North America from southern Canada to extreme northern Mexico. We analyzed variation in the rapidly evolving mitochondrial control region (CR) in 241 turtles from 117 localities across this range to examine whether the painted turtle represents a continentally distributed species based on molecular analysis. We found strong support for the novel hypothesis that C. p. dorsalis is the sister group to all remaining Chrysemys, with the remaining Chrysemys falling into a single, extremely wide-ranging and genetically undifferentiated species. Given our goal of an evolutionarily accurate taxonomy, we propose that two evolutionary lineages be recognized as species within Chrysemys: C. dorsalis (Agassiz 1857) in the southern Mississippi drainage region, and C. picta (Schneider 1783) from the rest of the range of the genus. Neither molecular nor recent morphological analyses argue for the hybrid origin of C. p. marginata as previously proposed. Within C. picta, we find evidence of at least two independent range expansions into previously glaciated regions of North America, one into New England and the other into the upper Midwest. We further find evidence of a massive extinction/recolonization event across the Great Plains/Rocky Mountain region encompassing over half the continental United States. The timing and extent of this colonization is consistent with a recently proposed regional aridification as the Laurentide ice sheets receded approximately 14,000 years ago, and we tentatively propose this paleoclimatological event as a major factor shaping genetic variation in Chrysemys.


Asunto(s)
Geografía , Filogenia , Tortugas/genética , Animales , Secuencia de Bases , Cartilla de ADN , Tortugas/clasificación
18.
Physiol Biochem Zool ; 75(5): 432-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12529844

RESUMEN

Common snapping turtles, Chelydra serpentina (Linnaeus), were submerged in anoxic and normoxic water at 3 degrees C. Periodic blood samples were taken, and PO(2), PCO(2), pH, [Na(+)], [K(+)], [Cl(-)], total Ca, total Mg, [lactate], [glucose], hematocrit, and osmolality were measured; weight gain was determined; and plasma [HCO(3)(-)] was calculated. Submergence in normoxic water caused a decrease in PCO(2) from 10.8 to 6.9 mmHg after 125 d, partially compensating a slight increase in lactate and allowing the turtles to maintain a constant pH. Submergence in anoxic water caused a rapid increase in lactate from 1.8 to 168.1 mmol/L after 100 d. Associated with the increased lactate were decreases in pH from 8.057 to 7.132 and in [HCO(3)(-)] from 51.5 to 4.9 mmol/L and increases in total Ca from 2.0 to 36.6 mmol/L, in total Mg from 1.8 to 12.1 mmol/L, and in [K(+)] from 3.08 to 8.45 mmol/L. We suggest that C. serpentina is tolerant of anoxic submergence and therefore is able to exploit habitats unavailable to some other species in northern latitudes.


Asunto(s)
Ambiente , Estaciones del Año , Tortugas/fisiología , Equilibrio Ácido-Base , Animales , Frío , Ecología , Femenino , Hibernación , Concentración de Iones de Hidrógeno , Hipoxia/sangre , Ácido Láctico/sangre , Masculino , Michigan , Oxígeno/análisis , Especificidad de la Especie , Factores de Tiempo , Tortugas/sangre , Agua/química , Wisconsin
19.
Oecologia ; 84(1): 16-23, 1990 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28312769

RESUMEN

The giant salamanders of North America include 4 genera, all of which are aquatic. We have compared the efficacy of aquatic O2 uptake among them by measuring theVO2 while submerged and determining the responses to progressive hypoxia at 10-240 mmHg at 20° C. Both species ofAmphiuma were metabolic O2 conformers over the entire range ofPO2. About half ofSiren lacertina were conformers over this range, and half were regulators with an average critical O2 tension of 92 mmHg. There were no short-term changes (days) in the response ofSiren to progressive hypoxia, but one animal switched from conformation to regulation after 4-5 months. Neither genus is considered to have an exceptionally low metabolic rate. The "whole-body O2 conductance", defined asΔVO2/ΔPO2(µl O2 · g-1 · h-1 · mmHg-1) in the range of metabolic O2 conformity, was least in the species most dependent upon air-breathing and most likely to be found in hypoxic waters (e.g., 0.076 forAmphiuma), and greatest in those that airbreathe less frequently and/or are found in relatively normoxic waters (e.g., 0.429 forNecturus). These conductances are considered to be adaptive in terms of preventing O2 loss through the skin, or in facilitating its uptake, as correlated with the O2 tensions normally prevailing in the environment of each species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...