Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 173(Pt 1): 113227, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803546

RESUMEN

Increasing concerns revolve around bacterial cross-contamination of leafy green vegetables via food-contact surfaces. Given that stainless-steel is among the commonly used food-contact surfaces, this study reports a coating strategy enhancing its hygiene and microbiological safety through an antifouling approach via superhydrophobicity. The developed method involves growing a nickel-nanodiamond nanocomposite film on 304 stainless-steel via electroplating and sequential functionalization of the outer surface layer with nonpolar organosilane molecules via polydopamine moieties. The resultant superhydrophobic stainless-steel surfaces had a static water contact angle of 156.3 ± 1.9° with only 2.3 ± 0.5° contact angle hysteresis. Application of the coating to stainless-steel was demonstrated to yield 2.3 ± 0.6 log10 and 2.0 ± 0.9 log10 reductions in the number of adherent gram-negative Escherichia coli O157:H7 and gram-positive Listeria innocua cells, respectively. These population reductions were shown to be statistically significant (α = 0.05). Coated stainless-steel also resisted fouling when contacted with contaminated romaine lettuce leaves and maintained significant non-wetting character when abraded with sand or contacted with high concentration surfactant solutions. The incorporation of superhydrophobic stainless-steel surfaces into food processing equipment used for washing and packaging leafy green vegetables has the potential to mitigate the transmission of pathogenic bacteria within food production facilities.


Asunto(s)
Escherichia coli O157 , Listeria , Acero Inoxidable , Microbiología de Alimentos , Bacterias , Interacciones Hidrofóbicas e Hidrofílicas
2.
ACS Appl Mater Interfaces ; 12(19): 21311-21321, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32023023

RESUMEN

Bacterial pathogens are responsible for millions of cases of illnesses and deaths each year throughout the world. The development of novel surfaces and coatings that effectively inhibit and prevent bacterial attachment, proliferation, and growth is one of the crucial steps for tackling this global challenge. Herein, we report a dual-functional coating for aluminum surfaces that relies on the controlled immobilization of lysozyme enzyme (muramidase) into interstitial spaces of presintered, nanostructured thin film based on ∼200 nm silica nanoparticles and the sequential chemisorption of an organofluorosilane to the available interfacial areas. The mean diameter of the resultant lysozyme microdomains was 3.1 ± 2.5 µm with an average spacing of 8.01 ± 6.8 µm, leading to a surface coverage of 15.32%. The coating had an overall root-mean-square (rms) roughness of 539 ± 137 nm and roughness factor of 1.50 ± 0.1, and demonstrated static, advancing, and receding water contact angles of 159.0 ± 1.0°, 155.4 ± 0.6°, and 154.4 ± 0.6°, respectively. Compared to the planar aluminum, the coated surfaces produced a 6.5 ± 0.1 (>99.99997%) and 4.0 ± 0.1 (>99.99%) log-cycle reductions in bacterial surfaces colonization against Gram-negative Salmonella Typhimurium LT2 and Gram-positive Listeria innocua, respectively. We anticipate that the implementation of such a coating strategy on healthcare environments and surfaces and food-contact surfaces can significantly reduce or eliminate potential risks associated with various contamination and cross-contamination scenarios.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Desinfectantes/farmacología , Enzimas Inmovilizadas/farmacología , Muramidasa/farmacología , Aluminio/química , Antibacterianos/química , Desinfectantes/química , Enzimas Inmovilizadas/química , Interacciones Hidrofóbicas e Hidrofílicas , Listeria/efectos de los fármacos , Muramidasa/química , Nanopartículas/química , Salmonella typhimurium/efectos de los fármacos , Dióxido de Silicio/química , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...