Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 134(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33288550

RESUMEN

Errors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin-kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule-kinetochore attachment. However, the molecular mechanisms by which astrin-kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule-kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule-kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Asociadas a Microtúbulos , Azul Alcián , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Células HeLa , Humanos , Cinetocoros , Metafase , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mitosis , Fenazinas , Fenotiazinas , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Resorcinoles , Huso Acromático/genética , Quinasa Tipo Polo 1
2.
Science ; 346(6212): 963-7, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25414305

RESUMEN

Through their association with a kleisin subunit (Scc1), cohesin's Smc1 and Smc3 subunits are thought to form tripartite rings that mediate sister chromatid cohesion. Unlike the structure of Smc1/Smc3 and Smc1/Scc1 interfaces, that of Smc3/Scc1 is not known. Disconnection of this interface is thought to release cohesin from chromosomes in a process regulated by acetylation. We show here that the N-terminal domain of yeast Scc1 contains two α helices, forming a four-helix bundle with the coiled coil emerging from Smc3's adenosine triphosphatase head. Mutations affecting this interaction compromise cohesin's association with chromosomes. The interface is far from Smc3 residues, whose acetylation prevents cohesin's dissociation from chromosomes. Cohesin complexes holding chromatids together in vivo do indeed have the configuration of hetero-trimeric rings, and sister DNAs are entrapped within these.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Secuencia Conservada , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , ADN/química , Mutación , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
3.
J Cell Biol ; 206(7): 833-42, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25246613

RESUMEN

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Fosfatasa 2/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Células HeLa , Humanos , Cinetocoros/enzimología , Fosforilación , Transporte de Proteínas
4.
Mol Cell ; 44(1): 97-107, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981921

RESUMEN

The contribution of DNA catenation to sister chromatid cohesion is unclear partly because it has never been observed directly within mitotic chromosomes. Differential sedimentation-velocity and gel electrophoresis reveal that sisters of 26 kb circular minichromosomes are held together by catenation as well as by cohesin. The finding that chemical crosslinking of cohesin's three subunit interfaces entraps sister DNAs of circular but not linear minichromosomes implies that cohesin functions using a topological principle. Importantly, cohesin holds both catenated and uncatenated DNAs together in this manner. In the vicinity of centromeres, catenanes are resolved by spindle forces, but linkages mediated directly by cohesin resist these forces even after complete decatenation. Crucially, persistence of catenation after S phase depends on cohesin. We conclude that by retarding Topo II-driven decatenation, cohesin mediates sister chromatid cohesion by an indirect mechanism as well as one involving entrapment of sister DNAs inside its tripartite ring.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , ADN Concatenado , Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Separación Celular , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Reactivos de Enlaces Cruzados , ADN de Hongos/genética , Mitosis , Conformación de Ácido Nucleico , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático , Cohesinas
5.
Mol Cell ; 39(5): 689-99, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20832721

RESUMEN

Sister chromatid cohesion is thought to involve entrapment of sister DNAs by a tripartite ring composed of the cohesin subunits Smc1, Smc3, and Scc1. Establishment of cohesion during S phase depends on acetylation of Smc3's nucleotide-binding domain (NBD) by the Eco1 acetyl transferase. It is destroyed at the onset of anaphase due to Scc1 cleavage by separase. In yeast, Smc3 acetylation is reversed at anaphase by the Hos1 deacetylase as a consequence of Scc1 cleavage. Smc3 molecules that remain acetylated after mitosis due to Hos1 inactivation cannot generate cohesion during the subsequent S phase, implying that cohesion establishment depends on de novo acetylation during DNA replication. By inducing Smc3 deacetylation in postreplicative cells due to Hos1 overexpression, we provide evidence that Smc3 acetylation contributes to the maintenance of sister chromatid cohesion. A cycle of Smc3 NBD acetylation is therefore an essential aspect of the chromosome cycle in eukaryotic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Fase S/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Separasa
6.
Mol Cell ; 33(6): 763-74, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19328069

RESUMEN

Cohesin's Smc1, Smc3, and Scc1 subunits form a tripartite ring that entraps sister DNAs. Scc3, Pds5, and Rad61 (Wapl) are regulatory subunits that control this process. We describe here smc3, scc3, pds5, and rad61 mutations that permit yeast cell proliferation and entrapment of sister DNAs by cohesin rings in the absence of Eco1, an acetyl transferase normally essential for establishing sister chromatid cohesion. The smc3 mutations cluster around and include a highly conserved lysine (K113) close to Smc3's ATP-binding pocket, which, together with K112, is acetylated by Eco1. Lethality caused by mutating both residues to arginine is suppressed by the scc3, pds5, and rad61 mutants. Scc3, Pds5, and Rad61 form a complex and inhibit entrapment of sister DNAs by a process involving the "K112/K113" surface on Smc3's ATPase. According to this model, Eco1 promotes sister DNA entrapment partly by relieving an antiestablishment activity associated with Scc3, Pds5, and Rad61.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Western Blotting , Proliferación Celular , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Cohesinas
7.
Nat Protoc ; 2(11): 2996-3000, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18007635

RESUMEN

Reversible protein phosphorylation is a major regulatory mechanism in a cell. A chemical-genetic strategy to conditionally inactivate protein kinases has been developed recently. Mutating a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors. The inhibitor can only bind to the mutant kinase and not to any other wild-type kinase, allowing specific inactivation of the modified kinase. Here, we describe a protocol to construct conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. This protocol can be completed in about 3 weeks and should be applicable to other organisms as well.


Asunto(s)
Alelos , Ingeniería de Proteínas/métodos , Proteínas Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/enzimología , Mutagénesis , Fosforilación , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...