Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(18): 4809-4818, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705790

RESUMEN

Despite extensive research since 1996, there are still open questions regarding the primary location of the nucleation process, the growth mechanism of the nanoparticles (NPs), and the influence of the liquid properties on the ultimate size of the NPs for the magnetron sputtering of metals onto liquids. Hence, for the first time to the authors' knowledge, the particle size evolution is in situ and in real-time examined during and after the sputtering of the silver atoms onto silicone oil, i.e., Sputtering onto Liquids (SoL) process. The particle size distribution (PSD) is measured via the Light Extinction Spectroscopy (LES) technique, and the deposition rate and stirring speed effects on the PSDs are analyzed. Based on De Brouckere mean diameters, the size evolution of silver nanoparticles (Ag NPs) over time is monitored. Ag NPs bigger than 20 nm are detected, and the PSDs are shown to be poly-disperse, which is also supported by the ex situ TEM measurements and in situ time-resolved absorption spectra. Moreover, it is shown that aggregation and growth of Ag NPs occur both at the plasma-liquid interface and inside the silicone oil during and after the magnetron sputtering. Despite the same amount of deposited silver, the growth kinetics of Ag NPs in silicone oil vary at different deposition rates. In particular, at higher deposition rates, larger NPs are formed. Stirring is seen to help disaggregate the particle lumps. Faster stirring does not substantially influence the final size but promotes the formation of smaller NPs (<20 nm). Also, low colloidal stability of Ag NPs in silicone oil is observed.

2.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570808

RESUMEN

CeO2-TiO2 is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO2 nanostructures decorated with CeO2 nanoparticles at the surface. As the precursor, we used H2Ti3O7 nanoribbons prepared from sodium titanate nanoribbons by ion exchange. Two cerium sources with an oxidation state of +3 and +4 were used to obtain mixed oxides. HAADF-STEM mapping of the Ce4+-modified nanoribbons revealed a thin continuous layer at the surface of the H2Ti3O7 nanoribbons, while Ce3+ cerium ions intercalated partially between the titanate layers. The phase composition and morphology changes were monitored during calcination between 620 °C and 960 °C. Thermal treatment led to the formation of CeO2 nanoparticles on the surface of the TiO2 nanoribbons, whose size increased with the calcination temperature. The use of Ce4+ raised the temperature required for converting H2Ti3O7 to TiO2-B by approximately 200 °C, and the temperature for the formation of anatase. For the Ce3+ batch, the presence of cerium inhibited the conversion to rutile. Analysis of cerium oxidation states revealed the existence of both +4 and +3 in all calcined samples, regardless of the initial cerium oxidation state.

3.
Nanoscale Adv ; 5(11): 2950-2962, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37260481

RESUMEN

Voluntary drug intoxication is mainly due to drug overdose or the interaction of several drugs. Coma and its associated complications such as hypoventilation, aspiration pneumopathy, and heart rhythm disorders are the main hallmarks of drug intoxication. Conventional detoxification treatments, including gastric lavage or vomiting, administration of ipecac or activated charcoal (CH), and the use of antidotes, have proven to be inefficient and are generally associated with severe adverse effects. To overcome these limitations, titanate nanotubes (TiNTs) are proposed as an efficient emerging detoxifying agent because of their tubular shape and high adsorption capacity. In the present study, the detoxifying ability of TiNTs was evaluated on paracetamol (PR)-intoxicated rats. Results indicate that the loading ability of PR into TiNTs (70%) was significantly higher than that recorded for CH (38.6%). In simulated intestinal medium, TiNTs showed a controlled drug release of less than 10% after 72 h of incubation. In PR-intoxicated rats, TiNTs treatment resulted in a 64% decrease of PR after 4 h of poisoning versus 40% for CH. Concomitantly, TiNTs efficiently reduced PR absorption by 90% after 24 h of poisoning, attenuated the elevated levels of biochemical markers (i.e., alanine aminotransferase, aspartate aminotransferase, creatinine, and TNF-α) and mitigated oxidative stress by increasing the activity of superoxide dismutase and reducing the oxidized glutathione/total glutathione ratio, suggesting a histoprotective effect of TiNTs against paracetamol-induced toxicity in rats. In addition to their safety and high stability in the entire gastro-intestinal tract, biodistribution analysis revealed that TiNTs exhibited low intestinal absorption owing to their large cluster size of compact aggregate nanomaterials across the intestinal villi hindering the absorption of paracetamol. Collectively, these data provide a new and promising solution for in vivo detoxification. TiNTs are expected to have great potential for the treatment of voluntary and accidental intoxication in emergency care.

4.
Materials (Basel) ; 16(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837325

RESUMEN

Developing strategies for the green synthesis of novel materials, such as pigments for protection from solar radiation, is a fundamental research subject in material science to mitigate the heat island effect. Within this perspective, the current study reports on the synthesis of blue pigments of ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) using recycled metallic aluminum (discarded can seal) with reflective properties of Near-infrared radiation. The pigments were characterized by XRD, SEM, XPS, UV-Vis, NIR diffuse reflectance spectroscopy, and CIE-1976 L*a*b* color measurements. The wettability of the coatings containing the synthesized pigments was also evaluated. The structural characterization showed that the pigments present the Gahnite crystalline phase. Colorimetric measurements obtained by the CIEL*a*b* method show values correlated to blue pigments attributed to Co2+ ions in tetrahedral sites. The pigments exhibit high near-infrared solar reflectance (with R% ≥ 60%), with an enhancement of nearly 20% for the pigment-containing neodymium when applied in white paint, indicating that the prepared compounds have the potential to be energy-saving color pigments for coatings.

5.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500967

RESUMEN

The COVID-19 pandemic has increased the need for developing disinfectant surfaces as well as reducing the spread of infections on contaminated surfaces and the contamination risk from the fomite route. The present work reports on the antiviral activity of coatings containing ZnO particles obtained by two simple synthesis routes using Aloe vera (ZnO-aloe) or cassava starch (ZnO-starch) as reaction fuel. After detailed characterization using XRD and NEXAFS, the obtained ZnO particles were dispersed in a proportion of 10% with two different waterborne acrylic coatings (binder and commercial white paint) and brushed on the surface of polycarbonates (PC). The cured ZnO/coatings were characterized by scanning electron microscopes (SEM) and energy-dispersive X-ray spectroscopy (EDS). Wettability tests were performed. The virucidal activity of the ZnO particles dispersed in the waterborne acrylic coating was compared to a reference control sample (PC plates). According to RT-PCR results, the ZnO-aloe/coating displays the highest outcome for antiviral activity against SARS-CoV-2 using the acrylic binder, inactivating >99% of the virus after 24 h of contact relative to reference control.

6.
Nanomaterials (Basel) ; 12(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35630986

RESUMEN

In this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial disinfection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in "Standard Methods for the Examination of Water and Wastewater" were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis, and disinfection efficiency.

7.
RSC Adv ; 12(10): 5953-5963, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35424545

RESUMEN

Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms. However, its intensive use becomes worrisome because of its environmental risks and the emergence of FLUM-resistant bacteria. To overcome these problems we propose in this study the encapsulation and the delivery of FLUM by titanate nanotubes (TiNTs). Optimal FLUM loading was reached by suspending the dehydrated powder nanomaterials (FLUM : TiNTs ratio = 1 : 5) in ethanol. The drug entrapment efficiency was calculated to be 80% approximately with a sustained release in PBS at 37 °C up to 5 days. Then FLUM@TiNTs was evaluated for both its in vitro drug release and antimicrobial activity against Escherichia coli (E. coli). Spectacularly high antibacterial activity compared to those of free FLUM antibiotic was obtained confirming the efficiency of TiNTs to protect FLUM from rapid degradation and transformation within bacteria improving thereby its antibacterial effect. Indeed FLUM@TiNTs was efficient to decrease gradually the bacterial viability to reach ≈5% after 5 days versus ≈75% with free FLUM. Finally, the ex vivo permeation experiments on sea bass (Dicentrachus labrax) intestine shows that TiNTs act to increase the intestinal permeation of FLUM during the experiment. Indeed the encapsulated FLUM flux increased 12 fold (1.46 µg cm2 h-1) compared to the free antibiotic (0.18 µg cm2 h-1). Thanks to its physical properties (diameter 10 nm, tubular shape…) and its high stability in the simulated intestinal medium, TiNTs are easy internalized by enterocytes, thus involving an endocytosis mechanism, and then improve intestinal permeation of FLUM. Taken together, FLUM@TiNTs hold potential as an effective approach for enhancing the antimicrobial activity of FLUM and pave the way not only for future pharmacokinetic studies in the treatment and targeting of fish infections but also for instating of novel strategies that overcome the challenges associated with the abusive use of antibiotics in fish farming.

8.
Nanotoxicology ; 15(8): 1102-1123, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34612152

RESUMEN

Nanotechnologies hold great promise for various applications. To predict and guarantee the safety of novel nanomaterials, it is essential to understand their mechanism of action in an organism, causally connecting adverse outcomes with early molecular events. This is best investigated using noninvasive advanced optical methods, such as high-resolution live-cell fluorescence microscopy, which require stable labeling of nanoparticles with fluorescent dyes. However, as shown here, when the labeling is performed inadequately, unbound fluorescent dyes and inadvertently altered chemical and physical properties of the nanoparticles can result in experimental artefacts and erroneous conclusions. To prevent such unintentional errors, we introduce a tested minimal combination of experimental methods to enable artefact-free fluorescent labeling of metal-oxide nanoparticles-the largest subpopulation of nanoparticles by industrial production and applications-and demonstrate its application in the case of TiO2 nanotubes. We (1) characterize potential changes of the nanoparticles' surface charge and morphology that might occur during labeling by using zeta potential measurements and transmission electron microscopy, respectively, and (2) assess stable binding of the fluorescent dye to the nanoparticles with either fluorescence intensity measurements or fluorescence correlation spectroscopy, which ensures correct nanoparticle localization. Together, these steps warrant the reliability and reproducibility of advanced optical tracking, which is necessary to explore nanomaterials' mechanism of action and will foster widespread and safe use of new nanomaterials.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Artefactos , Colorantes Fluorescentes , Nanopartículas del Metal/toxicidad , Microscopía Fluorescente , Nanopartículas/toxicidad , Óxidos/toxicidad , Reproducibilidad de los Resultados
9.
ACS Appl Mater Interfaces ; 13(34): 40909-40921, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410097

RESUMEN

The outstanding versatility of graphene for surface functionalization has been exploited by its decoration with synthesized polypyrrole (PPy) nanoparticles (NPs). A green, facile, and easily scalable for mass production nanocomposite development was proposed, and the resulting PPy@Graphene was implemented in chemoresistive gas sensors able to detect trace levels of ammonia (NH3) under room-temperature conditions. Gas exposure for 5 min revealed that the presence of nanoparticles decorating graphene entail greater sensitivity (13-fold) in comparison to the bare graphene performance. Noteworthy, excellent repeatability (0.7% of relative error) and a low limit of detection of 491 ppb were obtained, together with excellent long-term stability. Besides, an extensive material characterization was conducted, and vibration bands obtained via Raman spectroscopy confirmed the formation of PPy NPs, while X-ray spectroscopy (XPS) revealed the relative abundance of the different species, as polarons and bipolarons. Additionally, XPS analyses were conducted before and after NH3 exposure to assess the PPy aging and the changes induced in their physicochemical and electronic properties. Specifically, the gas sensor was tested during a 5-month period, demonstrating significant stability over time, since just a slight decrease (11%) in the responses was registered. In summary, the present work reports for the first time the use of PPy NPs decorating graphene for gas-sensing purposes, revealing promising properties for the development of unattended gas-sensing networks for monitoring air quality.

10.
Sensors (Basel) ; 21(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34450748

RESUMEN

TiO2 nanoparticles doped with different amounts of Nd3+ (0.5, 1, and 3 wt.%) were synthetized by the sol-gel method, and evaluated as potential temperature nanoprobes using the fluorescence intensity ratio between thermal-sensitive radiative transitions of the Nd3+. XRD characterization identified the anatase phase in all the doped samples. The morphology of the nanoparticles was observed with SEM, TEM and HRTEM microscopies. The relative amount of Nd3+ in TiO2 was obtained by EDXS, and the oxidation state of titanium and neodymium was investigated via XPS and NEXAFS, respectively. Nd3+ was present in all the samples, unlike titanium, where besides Ti4+, a significantly amount of Ti3+ was observed; the relative concentration of Ti3+ increased as the amount of Nd3+ in the TiO2 nanoparticles increased. The photoluminescence of the synthetized nanoparticles was investigated, with excitation wavelengths of 350, 514 and 600 nm. The emission intensity of the broad band that was associated with the presence of defects in the TiO2, increased when the concentration of Nd3+ was increased. Using 600 nm for excitation, the 4F7/2→4I9/2, 4F5/2→4I9/2 and 4F3/2→4I9/2 transitions of Nd3+ ions, centered at 760 nm, 821 nm, and 880 nm, respectively, were observed. Finally, the effect of temperature in the photoluminescence intensity of the synthetized nanoparticles was investigated, with an excitation wavelength of 600 nm. The spectra were collected in the 288-348 K range. For increasing temperatures, the emission intensity of the 4F7/2→4I9/2 and 4F5/2→4I9/2 transitions increased significantly, in contrast to the 4F3/2→4I9/2 transition, in which the intensity emission decreased. The fluorescence intensity ratio between the transitions I821I880=F5/24I49/2F43/2I49/2 and I760I880=F47/2I49/2F43/2I49/2 were used to calculate the relative sensitivity of the sensors. The relative sensitivity was near 3% K-1 for I760I880 and near 1% K-1 for I821I880.


Asunto(s)
Nanopartículas , Titanio , Microscopía Electrónica de Transmisión , Temperatura
11.
Adv Mater ; 32(47): e2003913, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33073368

RESUMEN

On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.


Asunto(s)
Simulación por Computador , Inhalación , Pulmón/efectos de los fármacos , Pulmón/patología , Material Particulado/toxicidad , Enfermedad Crónica , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Pulmón/metabolismo , Tamaño de la Partícula , Material Particulado/química , Material Particulado/metabolismo , Seguridad , Pruebas de Toxicidad
12.
Materials (Basel) ; 13(3)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024125

RESUMEN

This study is aimed to better understand the bactericidal mode of action of silver nanoparticles. Here we present the production and characterization of laser-synthesized silver nanoparticles along with growth curves of bacteria treated at sub-minimal and minimal inhibitory concentrations, obtained by optical density measurements. The main effect of the treatment is the increase of the bacterial apparent lag time, which is very well described by the novel growth model as well as the entire growth curves for different concentrations. The main assumption of the model is that the treated bacteria uptake the nanoparticles and inactivate, which results in the decrease of both the nanoparticles and the bacteria concentrations. The lag assumes infinitive value for the minimal inhibitory concentration treatment. This apparent lag phase is not postponed bacterial growth. It is a dynamic state in which the bacterial growth and death rates are close in value. Our results strongly suggest that the predominant mode of antibacterial action of silver nanoparticles is the penetration inside the membrane.

13.
PLoS One ; 15(1): e0227574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31940328

RESUMEN

Legionella pneumophila can cause a potentially fatal form of humane pneumonia (Legionnaires' disease), which is most problematic in immunocompromised and in elderly people. Legionella species is present at low concentrations in soil, natural and artificial aquatic systems and is therefore constantly entering man-made water systems. The environment temperature for it's ideal growth range is between 32 and 42°C, thus hot water pipes represent ideal environment for spread of Legionella. The bacteria are dormant below 20°C and do not survive above 60°C. The primary method used to control the risk from Legionella is therefore water temperature control. There are several other effective treatments to prevent growth of Legionella in water systems, however current disinfection methods can be applied only intermittently thus allowing Legionella to grow in between treatments. Here we present an alternative disinfection method based on antibacterial coatings with Cu-TiO2 nanotubes deposited on preformed surfaces. In the experiment the microbiocidal efficiency of submicron coatings on polystyrene to the bacterium of the genus Legionella pneumophila with a potential use in a water supply system was tested. The treatment thus constantly prevents growth of Legionella pneumophila in presence of water at room temperature. Here we show that 24-hour illumination with low power UVA light source (15 W/m2 UVA illumination) of copper doped TiO2 nanotube coated surfaces is effective in preventing growth of Legionella pneumophila. Microbiocidal effects of Cu-TiO2 nanotube coatings were dependent on the flow of the medium and the intensity of UV-A light. It was determined that tested submicron coatings have microbiocidal effects specially in a non-flow or low-flow conditions, as in higher flow rates, probably to a greater possibility of Legionella pneumophila sedimentation on the coated polystyrene surfaces, meanwhile no significant differences among bacteria reduction was noted regarding to non or low flow of medium.


Asunto(s)
Cobre/química , Cobre/farmacología , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/efectos de la radiación , Nanotubos/química , Titanio/química , Rayos Ultravioleta , Antibacterianos/química , Antibacterianos/farmacología , Catálisis , Legionella pneumophila/crecimiento & desarrollo , Procesos Fotoquímicos , Propiedades de Superficie
14.
Toxicol Appl Pharmacol ; 386: 114830, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734322

RESUMEN

Nanomaterial (NM) characteristics may affect the pulmonary toxicity and inflammatory response, including specific surface area, size, shape, crystal phase or other surface characteristics. Grouping of TiO2 in hazard assessment might be challenging because of variation in physicochemical properties. We exposed C57BL/6 J mice to a single dose of four anatase TiO2 NMs with various sizes and shapes by intratracheal instillation and assessed the pulmonary toxicity 1, 3, 28, 90 or 180 days post-exposure. The quartz DQ12 was included as benchmark particle. Pulmonary responses were evaluated by histopathology, electron microscopy, bronchoalveolar lavage (BAL) fluid cell composition and acute phase response. Genotoxicity was evaluated by DNA strand break levels in BAL cells, lung and liver in the comet assay. Multiple regression analyses were applied to identify specific TiO2 NMs properties important for the pulmonary inflammation and acute phase response. The TiO2 NMs induced similar inflammatory responses when surface area was used as dose metrics, although inflammatory and acute phase response was greatest and more persistent for the TiO2 tube. Similar histopathological changes were observed for the TiO2 tube and DQ12 including pulmonary alveolar proteinosis indicating profound effects related to the tube shape. Comparison with previously published data on rutile TiO2 NMs indicated that rutile TiO2 NMs were more inflammogenic in terms of neutrophil influx than anatase TiO2 NMs when normalized to total deposited surface area. Overall, the results suggest that specific surface area, crystal phase and shape of TiO2 NMs are important predictors for the observed pulmonary effects of TiO2 NMs.


Asunto(s)
Reacción de Fase Aguda/inducido químicamente , Nanoestructuras/toxicidad , Neumonía/inducido químicamente , Proteinosis Alveolar Pulmonar/inducido químicamente , Titanio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Relación Dosis-Respuesta a Droga , Femenino , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Neumonía/patología , Alveolos Pulmonares/efectos de los fármacos
15.
PLoS One ; 13(7): e0201490, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30048536

RESUMEN

Bacterial infections acquired in healthcare facilities including hospitals, the so called healthcare acquired or nosocomial infections, are still of great concern worldwide and represent a significant economical burden. One of the major causes of morbidity is infection with Methicillin Resistant Staphylococcus aureus (MRSA), which has been reported to survive on surfaces for several months. Bactericidal activity of copper-TiO2 thin films, which release copper ions and are deposited on glass surfaces and heated to high temperatures, is well known even when illuminated with very weak UVA light of about 10 µW/cm2. Lately, there is an increased intrerest for one-dimensional TiO2 nanomaterials, due to their unique properties, low cost, and high thermal and photochemical stability. Here we show that copper doped TiO2 nanotubes produce about five times more ·OH radicals as compared to undoped TiO2 nanotubes and that effective surface disinfection, determined by a modified ISO 22196:2011 test, can be achieved even at low intensity UVA light of 30 µW/cm2. The nanotubes can be deposited on a preformed surface at room temperature, resulting in a stable deposition resistant to multiple washings. Up to 103 microorganisms per cm2 can be inactivated in 24 hours, including resistant strains such as Methicillin-resistant Staphylococcus aureus (MRSA) and Extended-spectrum beta-lactamase Escherichia coli (E. coli ESBL). This disinfection method could provide a valuable alternative to the current surface disinfection methods.


Asunto(s)
Materiales Biocompatibles Revestidos , Cobre/química , Infección Hospitalaria/prevención & control , Nanoestructuras/química , Titanio/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Catálisis , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Infección Hospitalaria/microbiología , Desinfección/instrumentación , Desinfección/métodos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Nanotubos/química , Fotoquímica , Infecciones Estafilocócicas/prevención & control , Propiedades de Superficie
16.
Nano Lett ; 18(8): 5294-5305, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30039976

RESUMEN

Although the link between the inhalation of nanoparticles and cardiovascular disease is well established, the causal pathway between nanoparticle exposure and increased activity of blood coagulation factors remains unexplained. To initiate coagulation tissue factor bearing epithelial cell membranes should be exposed to blood, on the other side of the less than a micrometre thin air-blood barrier. For the inhaled nanoparticles to promote coagulation, they need to bind lung epithelial-cell membrane parts and relocate them into the blood. To assess this hypothesis, we use advanced microscopy and spectroscopy techniques to show that the nanoparticles wrap themselves with epithelial-cell membranes, leading to the membrane's disruption. The membrane-wrapped nanoparticles are then observed to freely diffuse across the damaged epithelial cell layer relocating epithelial cell membrane parts over the epithelial layer. Proteomic analysis of the protein content in the nanoparticles wraps/corona finally reveals the presence of the coagulation-initiating factors, supporting the proposed causal link between the inhalation of nanoparticles and cardiovascular disease.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Nanotubos/química , Titanio/química , Animales , Coagulación Sanguínea/fisiología , Movimiento Celular , Supervivencia Celular , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Pulmón/citología , Ratones , Tamaño de la Partícula , Corona de Proteínas/metabolismo , Proteoma/metabolismo , Transducción de Señal , Propiedades de Superficie
17.
PLoS One ; 13(5): e0197308, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29768464

RESUMEN

High economic burden is associated with foodborne illnesses. Different disinfection methods are therefore employed in food processing industry; such as use of ultraviolet light or usage of surfaces with copper-containing alloys. However, all the disinfection methods currently in use have some shortcomings. In this work we show that copper doped TiO2 nanotubes deposited on existing surfaces and illuminated with ceiling mounted fluorescent lights can retard the growth of Listeria Innocua by 80% in seven hours of exposure to the fluorescent lights at different places in a food processing plant or in the laboratory conditions with daily reinocuation and washing. The disinfection properties of the surfaces seem to depend mainly on the temperature difference of the surface and the dew point, where for the maximum effectiveness the difference should be about 3 degrees celsius. The TiO2 nanotubes have a potential to be employed for an economical and continuous disinfection of surfaces.


Asunto(s)
Desinfección/métodos , Luz , Nanotubos , Procesos Fotoquímicos , Titanio , Catálisis , Cobre/química , Escherichia coli/crecimiento & desarrollo , Manipulación de Alimentos , Listeria/crecimiento & desarrollo , Productos de la Carne/microbiología , Nanotubos/química , Nanotubos/ultraestructura , Temperatura , Titanio/química
18.
Sensors (Basel) ; 19(1)2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30602660

RESUMEN

The properties of multi-wall carbon nanotubes decorated with iridium oxide nanoparticles (IrOx-MWCNTs) are studied to detect harmful gases such as nitrogen dioxide and ammonia. IrOx nanoparticles were synthetized using a two-step method, based on a hydrolysis and acid condensation growth mechanism. The metal oxide nanoparticles obtained were employed for decorating the sidewalls of carbon nanotubes. Iridium-oxide nanoparticle decorated carbon nanotube material showed higher and more stable responses towards NH3 and NO2 than bare carbon nanotubes under different experimental conditions, establishing the optimal operating temperatures and estimating the limits of detection and quantification. Furthermore, the nanomaterials employed were studied using different morphological and compositional characterization techniques and a gas sensing mechanism is proposed.

19.
Beilstein J Nanotechnol ; 8: 1032-1042, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546897

RESUMEN

α-MnO2 nanorods were synthesized via the hydrothermal decomposition of KMnO4 in an acidic environment in the presence of Co2+ and Cr3+ ions. Reactions were carried out at three different temperatures: 90, 130 and 170 °C. All prepared samples exhibit a tetragonal MnO2 crystalline phase. SEM-EDS analysis shows that cobalt cations are incorporated to a higher degree into the MnO2 framework than chromium ions, and that the content of the dopant ions decreases with increasing reaction temperature. The oxidation of Co2+ to Co3+ during the reaction was proved by an XANES study, while EXAFS results confirm that both dopant ions substitute Mn4+ in the center of an octahedron. The K/Mn ratio in the doped samples synthesized at 170 °C is significantly lower than in the undoped samples. Analysis of an individual cobalt-doped α-MnO2 nanorod with HAADF-STEM reveals that the distribution of cobalt through the cross-section of the nanorod is uniform. The course of thermal decomposition of the doped nanorods is similar to that of the undoped ones. Dopant ions do not preserve the MnO2 phase at higher temperatures nor do they destabilize the cryptomelane structure.

20.
ACS Nano ; 9(10): 10133-41, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26340376

RESUMEN

In recent years, conversion chemical reactions, which are driven by ion diffusion, emerged as an important concept for formation of nanoparticles. Here we demonstrate that the slow anion diffusion in anion exchange reactions can be efficiently used to tune the disorder strength and the related electronic properties of nanoparticles. This paradigm is applied to high-temperature formation of titanium oxynitride nanoribbons, Ti(O,N), transformed from hydrogen titanate nanoribbons in an ammonia atmosphere. The nitrogen content, which determines the chemical disorder through random O/N occupancy and ion vacancies in the Ti(O,N) composition, increases with the reaction time. The presence of disorder has paramount effects on resistivity of Ti(O,N) nanoribbons. Atypically for metals, the resistivity increases with decreasing temperature due to the weak localization effects. From this state, superconductivity develops below considerably or completely suppressed critical temperatures, depending on the disorder strength. Our results thus establish the remarkable versatility of anion exchange for tuning of the electronic properties of Ti(O,N) nanoribbons and suggest that similar strategies may be applied to a vast number of nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...