Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667322

RESUMEN

Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.


Asunto(s)
Linaje de la Célula , Reprogramación Celular , Reprogramación Celular/genética , Humanos , Animales , Linaje de la Célula/genética , Neuronas/metabolismo , Neuronas/citología , Epigénesis Genética , Diferenciación Celular/genética , Transducción de Señal
2.
Nat Commun ; 13(1): 7159, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443290

RESUMEN

Polycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs). This function of PCGF1-PRC1 in turn facilitates PRC2-mediated repression of target genes such as Hmga2 and restricts premature myeloid differentiation. PCGF1-PRC1, therefore, maintains the differentiation potential of HSPCs by linking proper nucleosome configuration at the replication fork with PcG-mediated gene silencing to ensure life-long hematopoiesis.


Asunto(s)
Cromatina , Replicación del ADN , Cromatina/genética , Linaje de la Célula/genética , Nucleosomas/genética , Proteínas del Grupo Polycomb , Complejo Represivo Polycomb 2
3.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779068

RESUMEN

Data-independent acquisition (DIA)-mass spectrometry (MS)-based proteomic analysis overtop the existing data-dependent acquisition (DDA)-MS-based proteomic analysis to enable deep proteome coverage and precise relative quantitative analysis in single-shot liquid chromatography (LC)-MS/MS. However, DIA-MS-based proteomic analysis has not yet been optimized in terms of system robustness and throughput, particularly for its practical applications. We established a single-shot LC-MS/MS system with an MS measurement time of 90 min for a highly sensitive and deep proteomic analysis by optimizing the conditions of DIA and nanoLC. We identified 7020 and 4068 proteins from 200 ng and 10 ng, respectively, of tryptic floating human embryonic kidney cells 293 (HEK293F) cell digest by performing the constructed LC-MS method with a protein sequence database search. The numbers of identified proteins from 200 ng and 10 ng of tryptic HEK293F increased to 8509 and 5706, respectively, by searching the chromatogram library created by gas-phase fractionated DIA. Moreover, DIA protein quantification was highly reproducible, with median coefficients of variation of 4.3% in eight replicate analyses. We could demonstrate the power of this system by applying the proteomic analysis to detect subtle changes in protein profiles between cerebrums in germ-free and specific pathogen-free mice, which successfully showed that >40 proteins were differentially produced between the cerebrums in the presence or absence of bacteria.


Asunto(s)
Cerebro/metabolismo , Vida Libre de Gérmenes , Proteómica/métodos , Organismos Libres de Patógenos Específicos , Animales , Cromatografía Liquida , Bases de Datos de Proteínas , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Nanotecnología , Programas Informáticos , Espectrometría de Masas en Tándem
4.
Curr Protoc Mol Biol ; 123(1): e60, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29927065

RESUMEN

The genome exerts its functions through interactions with proteins. Hence, comprehensive identification of protein-occupied sites by genomic footprinting is critical to an in-depth understanding of genome functions. This unit describes the protocol of dimethyl sulfate-sequencing (DMS-seq). DMS is an alkylating reagent that methylates guanine and adenine in double-stranded DNA. DMS added to the culture medium readily enters the cell and methylates its DNA throughout the genome except for the regions bound by proteins, thereby obviating the need for nuclear isolation in genomic footprinting. Polyamine/AP-endonuclease treatment of DNA isolated from DMS-treated cells induces cleavages at the methylated sites. Deep sequencing of these fragments identifies protein-bound sites as peaks of protected fragments or troughs of cleavage sites. Furthermore, DMS displays an unexpected preference to nucleosome centers, enabling their direct detection without genetic manipulation. Therefore, DMS-seq provides a unique method for non-targeted profiling of in vivo protein-DNA interactions. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
ADN de Hongos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Ésteres del Ácido Sulfúrico/química , Mapeo Cromosómico , Biblioteca Genómica , Genómica , Nucleosomas/metabolismo
5.
Cell Rep ; 21(1): 289-300, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978481

RESUMEN

Protein-DNA interactions provide the basis for chromatin structure and gene regulation. Comprehensive identification of protein-occupied sites is thus vital to an in-depth understanding of genome function. Dimethyl sulfate (DMS) is a chemical probe that has long been used to detect footprints of DNA-bound proteins in vitro and in vivo. Here, we describe a genomic footprinting method, dimethyl sulfate sequencing (DMS-seq), which exploits the cell-permeable nature of DMS to obviate the need for nuclear isolation. This feature makes DMS-seq simple in practice and removes the potential risk of protein re-localization during nuclear isolation. DMS-seq successfully detects transcription factors bound to cis-regulatory elements and non-canonical chromatin particles in nucleosome-free regions. Furthermore, an unexpected preference of DMS confers on DMS-seq a unique potential to directly detect nucleosome centers without using genetic manipulation. We expect that DMS-seq will serve as a characteristic method for genome-wide interrogation of in vivo protein-DNA interactions.


Asunto(s)
Mapeo Cromosómico/métodos , Huella de ADN/métodos , Proteínas de Unión al ADN/genética , Genoma Humano , Nucleosomas/química , Ésteres del Ácido Sulfúrico/química , Línea Celular , Mapeo Cromosómico/instrumentación , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Biblioteca de Genes , Sitios Genéticos , Hepatocitos/citología , Hepatocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/genética , Histonas/metabolismo , Humanos , Nucleosomas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN
6.
ACS Synth Biol ; 2(8): 425-30, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23654281

RESUMEN

Monitoring levels of key metabolites in living cells comprises a critical step in various investigations. The simplest approach to this goal is a fluorescent reporter gene using an endogenous promoter responsive to the metabolite. However, such a promoter is often not identified or even present in the species of interest. An alternative can be a synthetic gene circuit based on a heterologous pair consisting of a promoter and a transcription factor known to respond to the metabolite. We exploited the met operator and MetJ repressor of Escherichia coli, the interaction between which depends on S-adenosylmethionine (SAM), to construct synthetic gene circuits that report SAM levels in Saccharomyces cerevisiae. Using a dual-input circuit that outputs selection marker genes in a doxycycline-tunable manner, we screened a genomic library to identify GAL11 as a novel multicopy enhancer of SAM levels. These results demonstrate the potential and utility of synthetic gene circuit-mediated metabolite monitoring.


Asunto(s)
Proteínas Bacterianas/genética , Genes Reporteros/genética , Genes Sintéticos/genética , Complejo Mediador/genética , Metaboloma/fisiología , S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Clonación Molecular/métodos , Variaciones en el Número de Copia de ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Bacteriana de la Expresión Génica/genética , Monitoreo Fisiológico/métodos , S-Adenosilmetionina/análisis , S-Adenosilmetionina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA