Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 48(2): 372-382, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32734456

RESUMEN

PURPOSE: With the increase of especially hospital-acquired infections, timely and accurate diagnosis of bacterial infections is crucial for effective patient care. Molecular imaging has the potential for specific and sensitive detection of infections. Siderophores are iron-specific chelators recognized by specific bacterial transporters, representing one of few fundamental differences between bacterial and mammalian cells. Replacing iron by gallium-68 without loss of bioactivity is possible allowing molecular imaging by positron emission tomography (PET). Here, we report on the preclinical evaluation of the clinically used siderophore, desferrioxamine-B (Desferal®, DFO-B), radiolabelled with 68Ga for imaging of bacterial infections. METHODS: In vitro characterization of [68Ga]Ga-DFO-B included partition coefficient, protein binding and stability determination. Specific uptake of [68Ga]Ga-DFO-B was tested in vitro in different microbial cultures. In vivo biodistribution was studied in healthy mice and dosimetric estimation for human setting performed. PET/CT imaging was carried out in animal infection models, representing the most common pathogens. RESULTS: DFO-B was labelled with 68Ga with high radiochemical purity and displayed hydrophilic properties, low protein binding and high stability in human serum and PBS. The high in vitro uptake of [68Ga]Ga-DFO-B in selected strains of Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus agalactiae could be blocked with an excess of iron-DFO-B. [68Ga]Ga-DFO-B showed rapid renal excretion and minimal retention in blood and other organs in healthy mice. Estimated human absorbed dose was 0.02 mSv/MBq. PET/CT images of animal infection models displayed high and specific accumulation of [68Ga]Ga-DFO-B in both P. aeruginosa and S. aureus infections with excellent image contrast. No uptake was found in sterile inflammation, heat-inactivated P. aeruginosa or S. aureus and Escherichia coli lacking DFO-B transporters. CONCLUSION: DFO-B can be easily radiolabelled with 68Ga and displayed suitable in vitro characteristics and excellent pharmacokinetics in mice. The high and specific uptake of [68Ga]Ga-DFO-B by P. aeruginosa and S. aureus was confirmed both in vitro and in vivo, proving the potential of [68Ga]Ga-DFO-B for specific imaging of bacterial infections. As DFO-B is used in clinic for many years and the estimated radiation dose is lower than for other 68Ga-labelled radiopharmaceuticals, we believe that [68Ga]Ga-DFO-B has a great potential for clinical translation.


Asunto(s)
Deferoxamina , Radioisótopos de Galio , Animales , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Staphylococcus aureus , Distribución Tisular , Tomografía Computarizada por Rayos X
2.
Sci Rep ; 8(1): 15698, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356077

RESUMEN

Pseudomonas aeruginosa is an increasingly prevalent opportunistic pathogen that causes a variety of life-threatening nosocomial infections. Novel strategies for the development of new antibacterial treatments as well as diagnostic tools are needed. One of the novel diagnostic strategies for the detection of infection could be the utilization of siderophores. Siderophores are low-molecular-weight chelators produced by microbes to scavenge essential iron. Replacing iron in siderophores by suitable radiometals, such as Ga-68 for positron emission tomography (PET) imaging, opens approaches for targeted imaging of infection. Here we report on pyoverdine PAO1 (PVD-PAO1), a siderophore produced by P. aeruginosa, labelled with Ga-68 for specific imaging of Pseudomonas infections. PVD-PAO1 was labelled with Ga-68 with high radiochemical purity. The resulting complex showed hydrophilic properties, low protein binding and high stability in human serum. In vitro uptake of 68Ga-PVD-PAO1 was highly dependent on the type of microbial culture. In normal mice 68Ga-PVD-PAO1 showed rapid pharmacokinetics with urinary excretion. PET imaging in infected animals displayed specific accumulation of 68Ga-PVD-PAO1 in infected tissues and better distribution than clinically used 18F-fluorodeoxyglucose (18F-FDG) and 68Ga-citrate. Ga-68 labelled pyoverdine PAO1 seems to be a promising agent for imaging of P. aeruginosa infections by means of PET.


Asunto(s)
Radioisótopos de Galio , Oligopéptidos , Tomografía de Emisión de Positrones/métodos , Infecciones por Pseudomonas/diagnóstico por imagen , Radiofármacos , Animales , Transporte Biológico , Medios de Cultivo/farmacología , Radioisótopos de Galio/farmacocinética , Hierro/farmacología , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Oligopéptidos/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Radiofármacos/farmacocinética , Ratas , Sideróforos/metabolismo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...