Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 351(6279): 1284-93, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26989245

RESUMEN

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

2.
Phys Rev Lett ; 109(22): 224501, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23368127

RESUMEN

A new nondissipative mechanism is proposed for the saturation of the axisymmetric magnetorotational (MRI) instability in thin Keplerian disks that are subject to an axial magnetic field. That mechanism relies on the energy transfer from the MRI to stable magnetosonic waves. Such mode interaction is enabled due to the vertical stratification of the disk that results in the discretization of its MRI spectrum, as well as by applying the appropriate boundary conditions. A second order Duffing-like amplitude equation for the initially unstable MRI modes is derived. The solutions of that equation exhibit bursty nonlinear oscillations with a constant amplitude that signifies the saturation level of the MRI. Those results are verified by a direct numerical solution of the full nonlinear reduced set of thin disk magnetohydrodynamics equations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...