Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 26(3): 594-607.e7, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650354

RESUMEN

Alternative translation initiation and stop codon readthrough in a few well-studied cases have been shown to allow the same transcript to generate multiple protein variants. Because the brain shows a particularly abundant use of alternative splicing, we sought to study alternative translation in CNS cells. We show that alternative translation is widespread and regulated across brain transcripts. In neural cultures, we identify alternative initiation on hundreds of transcripts, confirm several N-terminal protein variants, and show the modulation of the phenomenon by KCl stimulation. We also detect readthrough in cultures and show differential levels of normal and readthrough versions of AQP4 in gliotic diseases. Finally, we couple translating ribosome affinity purification to ribosome footprinting (TRAP-RF) for cell-type-specific analysis of neuronal and astrocytic translational readthrough in the mouse brain. We demonstrate that this unappreciated mechanism generates numerous and diverse protein isoforms in a cell-type-specific manner in the brain.


Asunto(s)
Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Animales , Encéfalo/patología , Ratones
2.
Neuron ; 86(4): 1000-1014, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25937169

RESUMEN

Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Proteómica , Células Ganglionares de la Retina/metabolismo , Animales , Axones/patología , Axotomía/métodos , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Nervio Óptico/metabolismo , Nervio Óptico/patología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA