Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(10)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455903

RESUMEN

Glucose oxidase (GOx) is an important industrial enzyme that can be optimized for specific applications by mutagenesis and activity-based screening. To increase the efficiency of this approach, we have developed a new ultrahigh-throughput screening platform based on a microfluidic lab-on-chip device that allows the sorting of GOx mutants from a saturation mutagenesis library expressed on the surface of yeast cells. GOx activity was measured by monitoring the fluorescence of water microdroplets dispersed in perfluorinated oil. The signal was generated via a series of coupled enzyme reactions leading to the formation of fluorescein. Using this new method, we were able to enrich the yeast cell population by more than 35-fold for GOx mutants with higher than wild-type activity after two rounds of sorting, almost double the efficiency of our previously described flow cytometry platform. We identified and characterized novel GOx mutants, the most promising of which (M6) contained a combination of six point mutations that increased the catalytic constant kcat by 2.1-fold compared to wild-type GOx and by 1.4-fold compared to a parental GOx variant. The new microfluidic platform for GOx was therefore more sensitive than flow cytometry and supports comprehensive screens of gene libraries containing multiple mutations per gene.


Asunto(s)
Glucosa Oxidasa/genética , Ensayos Analíticos de Alto Rendimiento , Proteínas Mutantes/genética , Saccharomyces cerevisiae/genética , Evolución Molecular Dirigida , Citometría de Flujo , Biblioteca de Genes , Glucosa Oxidasa/química , Glucosa Oxidasa/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Mutagénesis/genética , Proteínas Mutantes/aislamiento & purificación , Conformación Proteica , Ingeniería de Proteínas , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad
2.
PLoS One ; 13(12): e0208283, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30517195

RESUMEN

Targeted Next Generation Sequencing (NGS) is being adopted increasingly broadly in many research, commercial and clinical settings. Currently used target capture methods, however, typically require complex and lengthy (sometimes multi-day) workflows that complicates their use in certain applications. In addition, small panels for high sequencing depth applications such as liquid biopsy typically have low on-target rates, resulting in unnecessarily high sequencing cost. We have developed a novel targeted sequencing library preparation method, named Linked Target Capture (LTC), which replaces typical multi-day target capture workflows with a single-day, combined 'target-capture-PCR' workflow. This approach uses physically linked capture probes and PCR primers and is expected to work with panel sizes from 100 bp to >10 Mbp. It reduces the time and complexity of the capture workflow, eliminates long hybridization and wash steps and enables rapid library construction and target capture. High on-target read fractions are achievable due to repeated sequence selection in the target-capture-PCR step, thus lowering sequencing cost. We have demonstrated this technology on sample types including cell-free DNA (cfDNA) and formalin-fixed, paraffin-embedded (FFPE) derived DNA, capturing a 35-gene pan-cancer panel, and therein detecting single nucleotide variants, copy number variants, insertions, deletions and gene fusions. With the integration of unique molecular identifiers (UMIs), variants as low as 0.25% abundance were detected, limited by input mass and sequencing depth. Additionally, sequencing libraries were prepared in less than eight hours from extracted DNA to loaded sequencer, demonstrating that LTC holds promise as a broadly applicable tool for rapid, cost-effective and high performance targeted sequencing.


Asunto(s)
Cartilla de ADN/metabolismo , Sondas de ADN/metabolismo , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , Línea Celular , Variación Genética , Humanos , Mutación INDEL/genética , Polimorfismo de Nucleótido Simple/genética , Estándares de Referencia
3.
PLoS One ; 13(10): e0204265, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30278055

RESUMEN

A challenge in the clinical adoption of cell-free DNA (cfDNA) liquid biopsies for cancer care is their high cost compared to potential reimbursement. The most common approach used in liquid biopsies to achieve high specificity detection of circulating tumor DNA (ctDNA) among a large background of normal cfDNA is to attach molecular barcodes to each DNA template, amplify it, and then sequence it many times to reach a low-error consensus. In applications where the highest possible specificity is required, error rate can be lowered further by independently detecting the sequences of both strands of the starting cfDNA. While effective in error reduction, the additional sequencing redundancy required by such barcoding methods can increase the cost of sequencing up to 100-fold over standard next-generation sequencing (NGS) of equivalent depth. We present a novel library construction and analysis method for NGS that achieves comparable performance to the best barcoding methods, but without the increase in sequencing and subsequent sequencing cost. Named Proximity-Sequencing (Pro-Seq), the method merges multiple copies of each template into a single sequencing read by physically linking the molecular copies so they seed a single sequencing cluster. Since multiple DNA copies of the same template are compared for consensus within the same cluster, sequencing accuracy is improved without the use of redundant reads. Additionally, it is possible to represent both senses of the starting duplex in a single cluster. The resulting workflow is simple, and can be completed by a single technician in a work day with minimal hands on time. Using both cfDNA and cell line DNA, we report the average per-mutation detection threshold and per-base analytical specificity to be 0.003% and >99.9997% respectively, demonstrating that Pro-Seq is among the highest performing liquid biopsy technologies in terms of both sensitivity and specificity, but with greatly reduced sequencing costs compared to existing methods of comparable accuracy.


Asunto(s)
ADN Tumoral Circulante/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Neoplasias/diagnóstico , Línea Celular Tumoral , Humanos , Biopsia Líquida/economía , Neoplasias/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/economía
4.
Biomicrofluidics ; 11(1): 014114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28344725

RESUMEN

Active manipulation of droplets is crucial in droplet microfluidics. However, droplet polydispersity decreases the accuracy of active manipulation. We develop a microfluidic "droplet filter" that accurately separates droplets by size. The droplet filter has a sharp size cutoff and is capable of distinguishing droplets differing in volume by 20%. A simple model explains the behavior of the droplets as they pass through the filter. We show application of the filter in improving dielectric sorting efficiency.

5.
Langmuir ; 30(46): 13765-70, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25340527

RESUMEN

The ability of low boiling point liquid perfluorocarbons (PFCs) to undergo a phase change from a liquid to a gas upon ultrasound irradiation makes PFC-based emulsions promising vehicles for triggered delivery of payloads. However, loading hydrophilic agents into PFC-based emulsions is difficult due to their insolubility in PFC. Here, we address this challenge by taking advantage of microfluidic technologies to fabricate double emulsions consisting of large aqueous cores and a perfluorohexane (PFH) shell, thus yielding high loading capacities for hydrophilic agents. Using this technology, we efficiently encapsulate a model hydrophilic agent within the emulsions and study its response to ultrasound irradiation. Using a combination of optical and acoustic imaging methods, we observe payload release upon acoustic vaporization of PFH. Our work demonstrates the utility of microfluidic techniques for controllably loading hydrophilic agents into PFH-based emulsions, which have great potential for acoustically triggered release.


Asunto(s)
Portadores de Fármacos/química , Emulsiones/química , Fluorocarburos/química , Técnicas Analíticas Microfluídicas/métodos , Sonido , Interacciones Hidrofóbicas e Hidrofílicas
6.
Cell ; 158(5): 1083-1093, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171409

RESUMEN

In experimental science, organisms are usually studied in isolation, but in the wild, they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose. [GAR(+)], a protein-based epigenetic element, allows yeast to circumvent this "glucose repression" and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR(+)]. [GAR(+)] is advantageous to bacteria because yeast cells make less ethanol and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This cross-kingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR(+)] presents a unique example of Lamarckian inheritance.


Asunto(s)
Epigénesis Genética , Priones/metabolismo , Saccharomyces cerevisiae/metabolismo , Staphylococcus hominis/metabolismo , Fermentación , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Staphylococcus hominis/genética , Vino/microbiología , Levaduras/genética , Levaduras/metabolismo
7.
Nat Protoc ; 8(5): 870-91, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23558786

RESUMEN

We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ∼200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ∼1 million cells, the microfluidic operations require 2-6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5-7 d.


Asunto(s)
Citometría de Flujo/métodos , Análisis de la Célula Individual/métodos , Animales , Anticuerpos/análisis , Colorantes Fluorescentes , Hibridomas/metabolismo , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/métodos
8.
J Biol Chem ; 288(12): 8610-8618, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23355469

RESUMEN

Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential.


Asunto(s)
Membrana Nuclear/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Forma del Núcleo Celular , Expresión Génica , Células HL-60 , Humanos , Lamina Tipo A/biosíntesis , Lamina Tipo A/genética , Técnicas Analíticas Microfluídicas , Infiltración Neutrófila , Neutrófilos/metabolismo , Neutrófilos/fisiología , Membrana Nuclear/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Tretinoina/farmacología , Tretinoina/fisiología , Receptor de Lamina B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...