Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5474, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531394

RESUMEN

Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent "high-entropy alloys (HEAs)" based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations. This finding is surprising because plastic flows in BCC elemental metals and dilute alloys are generally controlled by screw dislocations. We use the insight and theory to perform a computationally-guided search over 107 BCC HEAs and identify over 106 possible ultra-strong high-T alloy compositions for future exploration.

2.
J Nanosci Nanotechnol ; 1(3): 343-8, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12914073

RESUMEN

A rapidly quenched nanocrystalline Hf11Ni89 alloy was produced by melt-spinning. The x-ray phase analysis shows that the as-quenched ribbon consists mainly of nanocrystalline fcc HfNi5 although a small amount of Ni(Hf) solid solution is also detected. The crystallite size distribution and the dislocation structure of the dominant HfNi5 phase were determined by a recently developed method of diffraction profile analysis. In this procedure, by assuming spherical shape and log-normal size distribution of crystallites, the Fourier coefficients of the measured physical profiles are fitted by the Fourier coefficients of well established ab initio functions of size and strain peak profiles. The anisotropic broadening of peak profiles is accounted for by the dislocation model of the mean square strain in terms of average dislocation contrast factors. It was found that the median and the variance of the crystallite size distribution are 3.3 nm and 0.82, respectively. The dislocation density is 3.7 x 10(16) m-2 and the character of dislocations is nearly pure screw. The results obtained from x-rays were in good agreement with transmission electron microscopy observations.


Asunto(s)
Aleaciones/química , Ensayo de Materiales/métodos , Modelos Moleculares , Nanotecnología/métodos , Difracción de Rayos X/métodos , Aleaciones/síntesis química , Cristalización/métodos , Cristalografía/métodos , Conformación Molecular , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...