Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 231: 107406, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787660

RESUMEN

BACKGROUND AND OBJECTIVE: Planning the optimal ablation strategy for the treatment of complex atrial tachycardia (CAT) is a time consuming task and is error-prone. Recently, directed network mapping, a technology based on graph theory, proved to efficiently identify CAT based solely on data of clinical interventions. Briefly, a directed network was used to model the atrial electrical propagation and reentrant activities were identified by looking for closed-loop paths in the network. In this study, we propose a recommender system, built as an optimization problem, able to suggest the optimal ablation strategy for the treatment of CAT. METHODS: The optimization problem modeled the optimal ablation strategy as that one interrupting all reentrant mechanisms while minimizing the ablated atrial surface. The problem was designed on top of directed network mapping. Considering the exponential complexity of finding the optimal solution of the problem, we introduced a heuristic algorithm with polynomial complexity. The proposed algorithm was applied to the data of i) 6 simulated scenarios including both left and right atrial flutter; and ii) 10 subjects that underwent a clinical routine. RESULTS: The recommender system suggested the optimal strategy in 4 out of 6 simulated scenarios. On clinical data, the recommended ablation lines were found satisfactory on 67% of the cases according to the clinician's opinion, while they were correctly located in 89%. The algorithm made use of only data collected during mapping and was able to process them nearly real-time. CONCLUSIONS: The first recommender system for the identification of the optimal ablation lines for CAT, based solely on the data collected during the intervention, is presented. The study may open up interesting scenarios for the application of graph theory for the treatment of CAT.


Asunto(s)
Aleteo Atrial , Ablación por Catéter , Taquicardia Supraventricular , Humanos , Aleteo Atrial/cirugía , Atrios Cardíacos/cirugía , Resultado del Tratamiento
2.
Front Physiol ; 12: 699291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290623

RESUMEN

In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.

3.
Front Physiol ; 12: 673047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108887

RESUMEN

BACKGROUND: Rate-varying S1S2 stimulation protocols can be used for restitution studies to characterize atrial substrate, ionic remodeling, and atrial fibrillation risk. Clinical restitution studies with numerous patients create large amounts of these data. Thus, an automated pipeline to evaluate clinically acquired S1S2 stimulation protocol data necessitates consistent, robust, reproducible, and precise evaluation of local activation times, electrogram amplitude, and conduction velocity. Here, we present the CVAR-Seg pipeline, developed focusing on three challenges: (i) No previous knowledge of the stimulation parameters is available, thus, arbitrary protocols are supported. (ii) The pipeline remains robust under different noise conditions. (iii) The pipeline supports segmentation of atrial activities in close temporal proximity to the stimulation artifact, which is challenging due to larger amplitude and slope of the stimulus compared to the atrial activity. METHODS AND RESULTS: The S1 basic cycle length was estimated by time interval detection. Stimulation time windows were segmented by detecting synchronous peaks in different channels surpassing an amplitude threshold and identifying time intervals between detected stimuli. Elimination of the stimulation artifact by a matched filter allowed detection of local activation times in temporal proximity. A non-linear signal energy operator was used to segment periods of atrial activity. Geodesic and Euclidean inter electrode distances allowed approximation of conduction velocity. The automatic segmentation performance of the CVAR-Seg pipeline was evaluated on 37 synthetic datasets with decreasing signal-to-noise ratios. Noise was modeled by reconstructing the frequency spectrum of clinical noise. The pipeline retained a median local activation time error below a single sample (1 ms) for signal-to-noise ratios as low as 0 dB representing a high clinical noise level. As a proof of concept, the pipeline was tested on a CARTO case of a paroxysmal atrial fibrillation patient and yielded plausible restitution curves for conduction speed and amplitude. CONCLUSION: The proposed openly available CVAR-Seg pipeline promises fast, fully automated, robust, and accurate evaluations of atrial signals even with low signal-to-noise ratios. This is achieved by solving the proximity problem of stimulation and atrial activity to enable standardized evaluation without introducing human bias for large data sets.

4.
Europace ; 23(23 Suppl 1): i133-i142, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751084

RESUMEN

AIMS: The treatment of atrial fibrillation beyond pulmonary vein isolation has remained an unsolved challenge. Targeting regions identified by different substrate mapping approaches for ablation resulted in ambiguous outcomes. With the effective refractory period being a fundamental prerequisite for the maintenance of fibrillatory conduction, this study aims at estimating the effective refractory period with clinically available measurements. METHODS AND RESULTS: A set of 240 simulations in a spherical model of the left atrium with varying model initialization, combination of cellular refractory properties, and size of a region of lowered effective refractory period was implemented to analyse the capabilities and limitations of cycle length mapping. The minimum observed cycle length and the 25% quantile were compared to the underlying effective refractory period. The density of phase singularities was used as a measure for the complexity of the excitation pattern. Finally, we employed the method in a clinical test of concept including five patients. Areas of lowered effective refractory period could be distinguished from their surroundings in simulated scenarios with successfully induced multi-wavelet re-entry. Larger areas and higher gradients in effective refractory period as well as complex activation patterns favour the method. The 25% quantile of cycle lengths in patients with persistent atrial fibrillation was found to range from 85 to 190 ms. CONCLUSION: Cycle length mapping is capable of highlighting regions of pathologic refractory properties. In combination with complementary substrate mapping approaches, the method fosters confidence to enhance the treatment of atrial fibrillation beyond pulmonary vein isolation particularly in patients with complex activation patterns.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Simulación por Computador , Atrios Cardíacos , Frecuencia Cardíaca , Humanos , Venas Pulmonares/cirugía
5.
J Am Heart Assoc ; 9(10): e015751, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32390491

RESUMEN

Background The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-related acid-sensitive K+ channel (TASK-1; hK2P3.1) two-pore-domain potassium channel was recently shown to regulate the atrial action potential duration. In the human heart, TASK-1 channels are specifically expressed in the atria. Furthermore, upregulation of atrial TASK-1 currents was described in patients suffering from atrial fibrillation (AF). We therefore hypothesized that TASK-1 channels represent an ideal target for antiarrhythmic therapy of AF. In the present study, we tested the antiarrhythmic effects of the high-affinity TASK-1 inhibitor A293 on cardioversion in a porcine model of paroxysmal AF. Methods and Results Heterologously expressed human and porcine TASK-1 channels are blocked by A293 to a similar extent. Patch clamp measurements from isolated human and porcine atrial cardiomyocytes showed comparable TASK-1 currents. Computational modeling was used to investigate the conditions under which A293 would be antiarrhythmic. German landrace pigs underwent electrophysiological studies under general anesthesia. Paroxysmal AF was induced by right atrial burst stimulation. After induction of AF episodes, intravenous administration of A293 restored sinus rhythm within cardioversion times of 177±63 seconds. Intravenous administration of A293 resulted in significant prolongation of the atrial effective refractory period, measured at cycle lengths of 300, 400 and 500 ms, whereas the surface ECG parameters and the ventricular effective refractory period lengths remained unchanged. Conclusions Pharmacological inhibition of atrial TASK-1 currents exerts antiarrhythmic effects in vivo as well as in silico, resulting in acute cardioversion of paroxysmal AF. Taken together, these experiments indicate the therapeutic potential of A293 for AF treatment.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Sulfonamidas/farmacología , ortoaminobenzoatos/farmacología , Animales , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Femenino , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Prueba de Estudio Conceptual , Periodo Refractario Electrofisiológico/efectos de los fármacos , Sus scrofa , Factores de Tiempo , Xenopus laevis
6.
IEEE Trans Biomed Eng ; 67(10): 2905-2915, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32070940

RESUMEN

OBJECTIVE: Unipolar intracardiac electrograms (uEGMs) measured inside the atria during electro-anatomic mapping contain diagnostic information about cardiac excitation and tissue properties. The ventricular far field (VFF) caused by ventricular depolarization compromises these signals. Current signal processing techniques require several seconds of local uEGMs to remove the VFF component and thus prolong the clinical mapping procedure. We developed an approach to remove the VFF component using data obtained during initial anatomy acquisition. METHODS: We developed two models which can approximate the spatio-temporal distribution of the VFF component based on acquired EGM data: Polynomial fit, and dipole fit. Both were benchmarked based on simulated cardiac excitation in two models of the human heart and applied to clinical data. RESULTS: VFF data acquired in one atrium were used to estimate model parameters. Under realistic noise conditions, a dipole model approximated the VFF with a median deviation of 0.029 mV, yielding a median VFF attenuation of 142. In a different setup, only VFF data acquired at distances of more than 5 mm to the atrial endocardium were used to estimate the model parameters. The VFF component was then extrapolated for a layer of 5 mm thickness lining the endocardial tissue. A median deviation of 0.082 mV (median VFF attenuation of 49x) was achieved under realistic noise conditions. CONCLUSION: It is feasible to model the VFF component in a personalized way and effectively remove it from uEGMs. SIGNIFICANCE: Application of our novel, simple and computationally inexpensive methods allows immediate diagnostic assessment of uEGM data without prolonging data acquisition.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Algoritmos , Electrocardiografía , Endocardio , Humanos , Procesamiento de Señales Asistido por Computador
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2277-2280, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946354

RESUMEN

The outcomes of ablation targeting either reentry activations or fractionated activity during persistent atrial fibrillation (AF) therapy remain suboptimal due to, among others, the intricate underlying AF dynamics. In the present work, we sought to investigate such AF dynamics in a heterogeneous simulation setup using recurrence quantification analysis (RQA). AF was simulated in a spherical model of the left atrium, from which 412 unipolar atrial electrograms (AEGs) were extracted (2 s duration; 5 mm spacing). The phase was calculated using the Hilbert transform, followed by the identification of points of singularity (PS). Three regions were defined according to the occurrence of PSs: 1) no rotors; 2) transient rotors and; 3) long-standing rotors. Bipolar AEGs (1114) were calculated from pairs of unipolar nodes and bandpass filtered (30-300 Hz). The CARTO criterion (Biosense Webster) was used for AEGs classification (normal vs. fractionated). RQA attributes were calculated from the filtered bipolar AEGs: determinism (DET); recurrence rate (RR); laminarity (LAM). Sample entropy (SampEn) and dominant frequency (DF) were also calculated from the AEGs. Regions with longstanding rotors have shown significantly lower RQA attributes and SampEn when compared to the other regions, suggesting a higher irregular behaviour (P≤0.01 for all cases). Normal and fractionated AEGs were found in all regions (respectively; Region 1: 387 vs. 15; Region 2: 221 vs. 13; Region 3: 415 vs. 63). Region 1 vs. Region 3 have shown significant differences in normal AEGs (P≤0.0001 for all RQA attributes and SampEn), and significant differences in fractionated AEGs for LAM, RR and SampEn (P=0.0071, P=0.0221 and P=0.0086, respectively). Our results suggest the co-existence of normal and fractionated AEGs within long-standing rotors. RQA has unveiled distinct dynamic patterns-irrespective of AEGs classification-related to regularity structures and their nonstationary behaviour in a rigorous deterministic context.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Algoritmos , Técnicas Electrofisiológicas Cardíacas , Atrios Cardíacos , Humanos , Recurrencia
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5446-5459, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441569

RESUMEN

Cardiac resynchronization therapy (CRT) can substantially improve dyssynchronous heart failure and reduce mortality. However, one-third of the CRT patients derive no measurable benefit from CRT, due to suboptimal placement of the left ventricular (LV) lead. We introduce a pipeline for improved CRT-therapy by creating an electromechanical model using patient-specific geometric parameters allowing individualization of therapy. The model successfully mimics expected changes when variables for tension, stiffness, and conduction are entered. Changing LV pacing site had a notable effect on maximum pressure gradient (dP/dtmax) in the presence of cardiac scarring, causing non-uniform excitation propagation through the LV. Tailoring CRT to the individual requires simulations with patient-specific biventricular meshes including cardiac geometry and conductivity properties.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Frecuencia Cardíaca , Ventrículos Cardíacos , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA