Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 8(1): 129, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32771067

RESUMEN

Leukotrienes (LTs) contribute to the neuropathology of chronic neurodegenerative disorders including Alzheimer's Disease (AD), where they mediate neuroinflammation and neuronal cell-death. In consequence, blocking the action of Leukotrienes (LTs) ameliorates pathologies and improves cognitive function in animal models of neurodegeneration. Surprisingly, the source of Leukotrienes (LTs) in the brain is largely unknown. Here, we identified the Leukotriene (LT) synthesis rate-limiting enzyme 5-Lipoxygenase (5-Lox) primarily in neurons and to a lesser extent in a subpopulation of microglia in human Alzheimer´s Disease (AD) hippocampus brain sections and in brains of APP Swedish PS1 dE9 (APP-PS1) mice, a transgenic model for Alzheimer´s Disease (AD) pathology. The 5-Lipoxygenase (5-Lox) activating protein (FLAP), which anchors 5-Lipoxygenase (5-Lox) to the membrane and mediates the contact to the substrate arachidonic acid, was confined exclusively to microglia with the entire microglia population expressing 5-Lipoxygenase activating protein (FLAP). To define the contribution of microglia in the Leukotriene (LT) biosynthesis pathway, we ablated microglia using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 in wildtype (WT) and APP-PS1 mice. Microglia ablation not only diminished the expression of FLAP and of the Leukotriene (LT) receptor Cysteinylleukotriene receptor 1 (CysLTR1), as expected based on their microglia cell type-specific expression, but also drastically reduced 5-Lipoxygenase (5-Lox) mRNA expression in the brain and its protein expression in neurons, in particular in wildtype (WT) mice. In conclusion i) microglia are key in Leukotriene (LT) biosynthesis, and ii) they regulate neuronal 5-Lipoxygenase (5-Lox) expression implying a yet unknown signaling mechanism between neurons and microglia.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Leucotrienos/biosíntesis , Microglía/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa/biosíntesis , Animales , Araquidonato 5-Lipooxigenasa/biosíntesis , Femenino , Humanos , Masculino , Ratones , Neuronas/metabolismo
2.
Brain Behav Immun ; 89: 67-86, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32479993

RESUMEN

Neuroinflammation is a major contributor to disease progression in Alzheimer's disease (AD) and is characterized by the activity of brain resident glial cells, in particular microglia cells. However, there is increasing evidence that peripheral immune cells infiltrate the brain at certain stages of AD progression and shape disease pathology. We recently identified CD8+ T-cells in the brain parenchyma of APP-PS1 transgenic mice being tightly associated with microglia as well as with neuronal structures. The functional role of CD8+ T-cells in the AD brain is however completely unexplored. Here, we demonstrate increased numbers of intra-parenchymal CD8+ T-cells in human AD post-mortem hippocampus, which was replicated in APP-PS1 mice. Also, aged WT mice show a remarkable infiltration of CD8+ T-cells, which was more pronounced and had an earlier onset in APP-PS1 mice. To address their functional relevance in AD, we successfully ablated the pool of CD8+ T-cells in the blood, spleen and brain from 12 months-old APP-PS1 and WT mice for a total of 4 weeks using an anti-CD8 antibody treatment. While the treatment at this time of disease stage did neither affect the cognitive outcome nor plaque pathology, RNAseq analysis of the hippocampal transcriptome from APP-PS1 mice lacking CD8+ T-cells revealed highly altered neuronal- and synapse-related gene expression including an up-regulation for neuronal immediate early genes (IEGs) such as the Activity Regulated Cytoskeleton Associated Protein (Arc) and the Neuronal PAS Domain Protein 4 (Npas4). Gene ontology enrichment analysis illustrated that the biological processes "regulation of neuronal synaptic plasticity" and the cellular components "postsynapses" were over-represented upon CD8+ T-cell ablation. Additionally, Kegg pathway analysis showed up-regulated pathways for "calcium signaling", "long-term potentiation", "glutamatergic synapse" and "axon guidance". Therefore, we conclude that CD8+ T-cells infiltrate the aged and AD brain and that brain CD8+ T-cells might directly contribute to neuronal dysfunction in modulating synaptic plasticity. Further analysis will be essential to uncover the exact mechanism of how CD8+ T-cells modulate the neuronal landscape and thereby contribute to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Linfocitos T CD8-positivos/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Ratones , Ratones Transgénicos , Presenilina-1/genética , Sinapsis/metabolismo
3.
J Neuroinflammation ; 15(1): 274, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30241479

RESUMEN

BACKGROUND: Undoubtedly, neuroinflammation is a major contributor to Alzheimer's disease (AD) progression. Neuroinflammation is characterized by the activity of brain resident glial cells, in particular microglia, but also by peripheral immune cells, which infiltrate the brain at certain stages of disease progression. The specific role of microglia in shaping AD pathology is still controversially discussed. Moreover, a possible role of microglia in the interaction and recruitment of peripheral immune cells has so far been completely ignored. METHODS: We ablated microglia cells in 12-month-old WT and APP-PS1 transgenic mice for 4 weeks using the CSF1R inhibitor PLX5622 and analyzed its consequences to AD pathology and in particular to peripheral immune cell infiltration. RESULTS: PLX5622 treatment successfully reduced microglia numbers. Interestingly, it uncovered a treatment-resistant macrophage population (Iba1+/TMEM119-). These cells strongly expressed the phagocytosis marker CD68 and the lymphocyte activation, homing, and adhesion molecule CD44, specifically at sites of amyloid-beta plaques in the brains of APP-PS1 mice. In consequence, ablation of microglia significantly raised the number of CD3+/CD8+ T-cells and reduced the expression of anti-inflammatory genes in the brains of APP-PS1 mice. CONCLUSION: We conclude that in neurodegenerative conditions, chronically activated microglia might limit CD3+/CD8+ T-cell recruitment to the brain and that local macrophages connect innate with adaptive immune responses. Investigating the role of peripheral immune cells, their interaction with microglia, and understanding the link between innate and adaptive immune responses in the brain might be a future directive in treating AD pathology.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Encefalitis/etiología , Linfocitos/patología , Microglía/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Antiinflamatorios/uso terapéutico , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Presenilina-1/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo
4.
Mol Neurobiol ; 53(8): 5796-806, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27544234

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the Western world and is characterized by a progressive loss of cognitive functions leading to dementia. One major histopathological hallmark of AD is the formation of amyloid-beta plaques, which is reproduced in numerous transgenic animal models overexpressing pathogenic forms of amyloid precursor protein (APP). In human AD and in transgenic amyloid plaque mouse models, several studies report altered rates of adult neurogenesis, i.e. the formation of new neurons from neural stem and progenitor cells, and impaired neurogenesis has also been attributed to contribute to the cognitive decline in AD. So far, changes in neurogenesis have largely been considered to be a consequence of the plaque pathology. Therefore, possible alterations in neurogenesis before plaque formation or in prodromal AD have been largely ignored. Here, we analysed adult hippocampal neurogenesis in amyloidogenic mouse models of AD at different points before and during plaque progression. We found prominent alterations of hippocampal neurogenesis before plaque formation. Survival of newly generated cells and the production of new neurons were already compromised at this stage. Moreover and surprisingly, proliferation of doublecortin (DCX) expressing neuroblasts was significantly and specifically elevated during the pre-plaque stage in the APP-PS1 model, while the Nestin-expressing stem cell population was unaffected. In summary, changes in neurogenesis are evident already before plaque deposition and might contribute to well-known early hippocampal dysfunctions in prodromal AD such as hippocampal overactivity.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Neurogénesis , Enfermedad de Alzheimer/metabolismo , Animales , Recuento de Células , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Giro Dentado/patología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...