Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 649: 123633, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37995822

RESUMEN

The stability of emulsions is a critical concern across multiple industries, including food products, agricultural formulations, petroleum, and pharmaceuticals. Achieving prolonged emulsion stability is challenging and depends on various factors, with particular emphasis on droplet size, shape, and spatial distribution. Addressing this issue necessitates an effective investigation of these parameters and finding solutions to enhance emulsion stability. Image analysis offers a powerful tool for researchers to explore these characteristics and advance our understanding of emulsion instability in different industries. In this review, we highlight the potential of state-of-the-art deep learning-based approaches in computer vision and image analysis to extract relevant features from emulsion micrographs. A comprehensive summary of classic and cutting-edge techniques employed for characterizing spherical objects, including droplets and bubbles observed in micrographs of industrial emulsions, has been provided. This review reveals significant deficiencies in the existing literature regarding the investigation of highly concentrated emulsions. Despite the practical importance of these systems, limited research has been conducted to understand their unique characteristics and stability challenges. It has also been identified that there is a scarcity of publications in multimodal analysis and a lack of a complete automated in-line emulsion characterization system. This review critically evaluates the existing challenges and presents prospective directions for future advancements in the field, aiming to address the current gaps and contribute to the scientific progression in this area.


Asunto(s)
Inteligencia Artificial , Emulsiones , Estudios Prospectivos , Composición de Medicamentos/métodos
2.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866773

RESUMEN

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectroscopía de Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética
3.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36912262

RESUMEN

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Medios de Contraste , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Periodo Preoperatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...