Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 166(5): 790-808, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37534523

RESUMEN

Development of the mammalian neocortex requires proper inside-out migration of developing cortical neurons from the germinal ventricular zone toward the cortical plate. The mechanics of this migration requires precise coordination of different cellular phenomena including cytoskeleton dynamics, membrane trafficking, and cell adhesion. The small GTPases play a central role in all these events. The small GTPase Rab21 regulates migration and neurite growth in developing neurons. Moreover, regulators and effectors of Rab21 have been implicated in brain pathologies with cortical malformations, suggesting a key function for the Rab21 signaling pathway in cortical development. Mechanistically, it has been posited that Rab21 influences cell migration by controlling the trafficking of endocytic vesicles containing adhesion molecules. However, direct evidence of the participation of Rab21 or its mechanism of action in the regulation of cortical migration is still incomplete. In this study, we demonstrate that Rab21 plays a critical role in the differentiation and migration of pyramidal neurons by regulating the levels of the amyloid precursor protein on the neuronal cell surface. Rab21 loss of function increased the levels of membrane-exposed APP, resulting in impaired cortical neuronal differentiation and migration. These findings further our understanding of the processes governing the development of the cerebral cortex and shed light onto the molecular mechanisms behind cortical development disorders derived from the malfunctioning of Rab21 signaling effectors.


Asunto(s)
GTP Fosfohidrolasas , Neocórtex , Animales , GTP Fosfohidrolasas/metabolismo , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Neocórtex/metabolismo , Movimiento Celular/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Mamíferos/metabolismo
2.
J Tissue Eng Regen Med ; 16(2): 151-162, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816618

RESUMEN

Three dimensional (3D) in vitro neuronal cultures can better reproduce physiologically relevant phenotypes compared to 2D-cultures, because in vivo neurons reside in a 3D microenvironment. Interest in neuronal 3D cultures is emerging, with special attention to the mechanical forces that regulate axon elongation and sprouting in three dimensions. Type I collagen (Col-I) is a native substrate since it is present in the extracellular matrix and hence emulates an in vivo environment to study axon growth. The impact of its mechanical properties needs to be further investigated. Here, we generated Col-I 3D matrices of different mechanical stiffness and evaluated axon growth in three dimensions. Superior cervical ganglion (SCG) explants from neonatal rats were cultured in soft and stiff Col-I 3D matrices and neurite outgrowth was assessed by measuring: maximum neuritic extent; neuritic halo area and fasciculation. Axonal cytoskeletal proteins were examined. Axon elongation in stiff Col-I 3D matrices was reduced (31%) following 24 h in culture compared to soft matrices. In stiff matrices, neurites fasciculated and formed less dense halos. Consistently, almost no F-actin rich growth cones were recognized, and F-actin staining was strongly reduced in the axonal compartment. This study shows that stiffness negatively affects 3D neurite outgrowth and adds insights on the cytoskeletal responses upon mechanic interactions of axons with a 3D environment. Our data will serve to facilitate the development of model systems that are mechanically well-behaved but still mimic key physiologic properties observed in vivo.


Asunto(s)
Colágeno Tipo I , Conos de Crecimiento , Actinas , Animales , Axones/fisiología , Células Cultivadas , Matriz Extracelular , Neuritas , Ratas
3.
Nano Lett ; 21(5): 2296-2303, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33621102

RESUMEN

Förster resonance energy transfer (FRET) imaging methods provide unique insight into the spatial distribution of energy transfer and (bio)molecular interaction events, though they deliver average information for an ensemble of events included in a diffraction-limited volume. Coupling super-resolution fluorescence microscopy and FRET has been a challenging and elusive task. Here, we present STED-FRET, a method of general applicability to obtain super-resolved energy transfer images. In addition to higher spatial resolution, STED-FRET provides a more accurate quantification of interaction and has the capacity of suppressing contributions of noninteracting partners, which are otherwise masked by averaging in conventional imaging. The method capabilities were first demonstrated on DNA-origami model systems, verified on uniformly double-labeled microtubules, and then utilized to image biomolecular interactions in the membrane-associated periodic skeleton (MPS) of neurons.

4.
Nat Commun ; 12(1): 517, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483489

RESUMEN

Single-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule's image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope. SIMPLER requires no hardware modification whatsoever to a conventional total internal reflection fluorescence microscope and complements any 2D single-molecule localization microscopy method to deliver 3D images with nearly isotropic nanometric resolution. Performance examples include SIMPLER-direct stochastic optical reconstruction microscopy images of the nuclear pore complex with sub-20 nm axial localization precision and visualization of microtubule cross-sections through SIMPLER-DNA points accumulation for imaging in nanoscale topography with sub-10 nm axial localization precision.


Asunto(s)
Fluorescencia , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Imagen Individual de Molécula/métodos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Microtúbulos/metabolismo , Fotometría/métodos
5.
Sci Rep ; 10(1): 2917, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076054

RESUMEN

Fluorescent nanoscopy approaches have been used to characterize the periodic organization of actin, spectrin and associated proteins in neuronal axons and dendrites. This membrane-associated periodic skeleton (MPS) is conserved across animals, suggesting it is a fundamental component of neuronal extensions. The nanoscale architecture of the arrangement (190 nm) is below the resolution limit of conventional fluorescent microscopy. Fluorescent nanoscopy, on the other hand, requires costly equipment and special analysis routines, which remain inaccessible to most research groups. This report aims to resolve this issue by using protein-retention expansion microscopy (pro-ExM) to reveal the MPS of axons. ExM uses reagents and equipment that are readily accessible in most neurobiology laboratories. We first explore means to accurately estimate the expansion factors of protein structures within cells. We then describe the protocol that produces an expanded specimen that can be examined with any fluorescent microscopy allowing quantitative nanoscale characterization of the MPS. We validate ExM results by direct comparison to stimulated emission depletion (STED) nanoscopy. We conclude that ExM facilitates three-dimensional, multicolor and quantitative characterization of the MPS using accessible reagents and conventional fluorescent microscopes.


Asunto(s)
Axones/metabolismo , Microscopía Fluorescente/métodos , Espectrina/metabolismo , Animales , Calibración , Membrana Celular/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Ratas Wistar , Reproducibilidad de los Resultados
6.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32001550

RESUMEN

In contrast to neurons in the CNS, damaged neurons from the peripheral nervous system (PNS) regenerate, but this process can be slow and imperfect. Successful regeneration is orchestrated by cytoskeletal reorganization at the tip of the proximal axon segment and cytoskeletal disassembly of the distal segment. Collapsin response mediator protein 4 (CRMP4) is a cytosolic phospho-protein that regulates the actin and microtubule cytoskeleton. During development, CRMP4 promotes growth cone formation and dendrite development. Paradoxically, in the adult CNS, CRMP4 impedes axon regeneration. Here, we investigated the involvement of CRMP4 in peripheral nerve injury in male and female Crmp4-/- mice following sciatic nerve injury. We find that sensory axon regeneration and Wallerian degeneration are impaired in Crmp4-/- mice following sciatic nerve injury. In vitro analysis of dissociated dorsal root ganglion (DRG) neurons from Crmp4-/- mice revealed that CRMP4 functions in the proximal axon segment to promote the regrowth of severed DRG neurons and in the distal axon segment where it facilitates Wallerian degeneration through calpain-dependent formation of harmful CRMP4 fragments. These findings reveal an interesting dual role for CRMP4 in proximal and distal axon segments of injured sensory neurons that coordinately facilitate PNS axon regeneration.


Asunto(s)
Traumatismos de los Nervios Periféricos , Degeneración Walleriana , Animales , Axones , Femenino , Ganglios Espinales , Masculino , Ratones , Proteínas Musculares , Regeneración Nerviosa , Nervio Ciático , Semaforina-3A
7.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838324

RESUMEN

Development of the nervous system relies on a balance between axon and dendrite growth and subsequent pruning and degeneration. The developmental degeneration of dorsal root ganglion (DRG) sensory axons has been well studied in part because it can be readily modeled by removing the trophic support by nerve growth factor (NGF) in vitro. We have recently reported that axonal fragmentation induced by NGF withdrawal is dependent on Ca2+, and here, we address the mechanism of Ca2+ entry required for developmental axon degeneration of mouse embryonic DRG neurons. Our results show that the transient receptor potential vanilloid family member 1 (TRPV1) cation channel plays a critical role mediating Ca2+ influx in DRG axons withdrawn from NGF. We further demonstrate that TRPV1 activation is dependent on reactive oxygen species (ROS) generation that is driven through protein kinase C (PKC) and NADPH oxidase (NOX)-dependent pathways that become active upon NGF withdrawal. These findings demonstrate novel mechanistic links between NGF deprivation, PKC activation, ROS generation, and TRPV1-dependent Ca2+ influx in sensory axon degeneration.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Degeneración Nerviosa/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Cationes Bivalentes/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPV/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-29875650

RESUMEN

Neurons are the most asymmetric cell types, with their axons commonly extending over lengths that are thousand times longer than the diameter of the cell soma. Fluorescence nanoscopy has recently unveiled that actin, spectrin and accompanying proteins form a membrane-associated periodic skeleton (MPS) that is ubiquitously present in mature axons from all neuronal types evaluated so far. The MPS is a regular supramolecular protein structure consisting of actin "rings" separated by spectrin tetramer "spacers". Although the MPS is best organized in axons, it is also present in dendrites, dendritic spine necks and thin cellular extensions of non-neuronal cells such as oligodendrocytes and microglia. The unique organization of the actin/spectrin skeleton has raised the hypothesis that it might serve to support the extreme physical and structural conditions that axons must resist during the lifespan of an organism. Another plausible function of the MPS consists of membrane compartmentalization and subsequent organization of protein domains. This review focuses on what we know so far about the structure of the MPS in different neuronal subdomains, its dynamics and the emerging evidence of its impact in axonal biology.

9.
Sci Rep ; 8(1): 6002, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29650975

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

10.
Sci Rep ; 8(1): 3007, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445221

RESUMEN

Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.


Asunto(s)
Actinas/metabolismo , Axones/patología , Membrana Celular/metabolismo , Conos de Crecimiento/patología , Plasticidad Neuronal , Degeneración Retrógrada , Espectrina/metabolismo , Citoesqueleto de Actina , Animales , Axones/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Ratas , Ratas Wistar
11.
Sci Rep ; 7(1): 16029, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167561

RESUMEN

Fluorescence nanoscopy imaging permits the observation of periodic supramolecular protein structures in their natural environment, as well as the unveiling of previously unknown protein periodic structures. Deciphering the biological functions of such protein nanostructures requires systematic and quantitative analysis of large number of images under different experimental conditions and specific stimuli. Here we present a method and an open source software for the automated quantification of protein periodic structures in super-resolved images. Its performance is demonstrated by analyzing the abundance and regularity of the spectrin membrane-associated periodic skeleton (MPS) in hippocampal neurons of 2 to 40 days in vitro, imaged by STED and STORM nanoscopy. The automated analysis reveals that both the abundance and the regularity of the MPS increase over time and reach maximum plateau values after 14 DIV. A detailed analysis of the distributions of correlation coefficients provides indication of dynamical assembly and disassembly of the MPS.


Asunto(s)
Membrana Celular/metabolismo , Hipocampo/metabolismo , Microscopía Fluorescente/métodos , Espectrina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Ratones , Neuronas/metabolismo
12.
J Neurochem ; 141(3): 330-340, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28218971

RESUMEN

Most growth factors and hormones are synthesized as pre-pro-proteins which are processed to the biologically active mature protein. The pre- and prodomains are cleaved from the precursor protein in the secretory pathway or, in some cases, extracellularly. The canonical functions of these prodomains are to assist in folding and stabilization of the mature domain, to direct intra and extracellular localization, to facilitate storage, and to regulate bioavailability of their mature counterpart. Recently, exciting evidence has revealed that prodomains of certain growth factors, after cleaved from the precursor pro-protein, can act as independent active signaling molecules. In this review, we discuss the various classical functions of prodomains, and the biological consequences of these pro-peptides acting as ligands. We will focus our attention on the brain-derived neurotrophic factor prodomain (pBDNF), which has been recently described as a novel secreted ligand influencing neuronal morphology and physiology.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hormonas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Precursores de Proteínas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Ligandos , Precursores de Proteínas/genética
13.
Genesis ; 54(12): 605-612, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27775873

RESUMEN

The Neurotrophin receptor associated death domain gene (Nradd/Nrh2/Plaidd) is a type I transmembrane protein with a unique and short N-terminal extracellular domain and a transmembrane and intracellular domain that bears high similarity to the p75 neurotrophin receptor (p75NTR/Ngfr). Initial studies suggested that NRADD regulates neurotrophin signaling but very little is known about its physiological roles. We have generated and characterized NRADD conditional and germ-line null mouse lines. These mice are viable and fertile and dont show evident abnormalities. However, NRADD deletion results in an increase in the proportion of dorsal root ganglion neurons expressing p75NTR. The NRADD conditional and complete knockout mouse lines generated are new and useful tools to study the physiological roles of NRADD. Birth Defects Research (Part A) 106:605-612, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Glicoproteínas de Membrana/genética , Factores de Crecimiento Nervioso/genética , Receptores de Muerte Celular/genética , Receptores de Factor de Crecimiento Nervioso/genética , Animales , Apoptosis/genética , Línea Celular , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
14.
Mol Cell Neurosci ; 75: 81-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27449758

RESUMEN

Recent findings indicate that the mechanisms that drive reshaping of the nervous system are aberrantly activated in epilepsy and several neurodegenerative diseases. The recurrent seizures in epilepsy, particularly in the condition called status epilepticus, can cause permanent neurological damage, resulting in cognitive dysfunction and other serious neurological conditions. In this study, we used an in vitro model of status epilepticus to examine the role of calpain in the degeneration of hippocampal neurons. We grew neurons on a culture system that allowed studying the dendritic and axonal domains separately from the cell bodies. We found that a recently characterized calpain substrate, the neurotrophin receptor TrkB, is cleaved in the dendritic and axonal domain of neurons committed to die, and this constitutes an early step in the neuronal degeneration process. While the full-length TrkB (TrkB-FL) levels decreased, the truncated form of TrkB (Tc TrkB-FL) concurrently increased, leading to a TrkB-FL/Tc TrkB-FL imbalance, which is thought to be causally linked to neurodegeneration. We further show that the treatment with N-acetyl-Leu-Leu-norleucinal, a specific calpain activity blocker, fully protects the neuronal processes from degeneration, prevents the TrkB-FL/Tc TrkB-FL imbalance, and provides full neuroprotection. Moreover, the use of the TrkB antagonist ANA 12 at the time when the levels of TrkB-FL were significantly decreased, totally blocked neuronal death, suggesting that Tc TrkB-FL may have a role in neuronal death. These results indicate that the imbalance of these neurotrophins receptors plays a key role in neurite degeneration induced by seizures.


Asunto(s)
Calpaína/metabolismo , Neuronas/metabolismo , Receptor trkB/metabolismo , Animales , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Muerte Celular , Células Cultivadas , Hipocampo/citología , Leupeptinas/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis , Ratas , Ratas Wistar , Receptor trkB/antagonistas & inhibidores , Estado Epiléptico/metabolismo
15.
FASEB J ; 30(9): 3083-90, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27189977

RESUMEN

Hippocampal long-term depression (LTD) is an active form of synaptic plasticity that is necessary for consolidation of spatial memory, contextual fear memory, and novelty acquisition. Recent studies have shown that caspases (CASPs) play an important role in NMDA receptor-dependent LTD and are involved in postsynaptic remodeling and synaptic maturation. In the present study, we examined the role of X-linked inhibitor of apoptosis (XIAP), a putative endogenous CASP inhibitor, in synaptic plasticity in the hippocampus. Analysis in acute brain slices and in cultured hippocampal neurons revealed that XIAP deletion increases CASP-3 activity, enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization, sharply increases LTD, and significantly reduces synapse density. In vivo behaviors related to memory were also altered in XIAP(-/-) mice, with faster acquisition of spatial object location and increased fear memory observed. Together, these results indicate that XIAP plays an important physiologic role in regulating sublethal CASP-3 activity within central neurons and thereby facilitates synaptic plasticity and memory acquisition.-Gibon, J., Unsain, N., Gamache, K., Thomas, R. A., De Leon, A., Johnstone, A., Nader, K., Séguéla, P., Barker, P. A. The X-linked inhibitor of apoptosis regulates long-term depression and learning rate.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Proteínas Inhibidoras de la Apoptosis/genética , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología
16.
Neuron ; 88(3): 461-74, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26539888

RESUMEN

Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Animales , Humanos , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal/fisiología
17.
J Neurosci ; 35(35): 12088-102, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338321

RESUMEN

Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT: Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.


Asunto(s)
Calcio/metabolismo , Glaucoma/patología , Receptores AMPA/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Colina O-Acetiltransferasa/metabolismo , Cobalto/metabolismo , Modelos Animales de Enfermedad , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Glaucoma/inducido químicamente , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas , Receptores AMPA/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Solución Salina Hipertónica/toxicidad , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/fisiología
18.
J Neurosci ; 35(26): 9741-53, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134656

RESUMEN

Persistent firing of entorhinal cortex (EC) pyramidal neurons is a key component of working and spatial memory. We report here that a pro-brain-derived neurotrophic factor (proBDNF)-dependent p75NTR signaling pathway plays a major role in excitability and persistent activity of pyramidal neurons in layer V of the EC. Using electrophysiological recordings, we show that proBDNF suppresses persistent firing in entorhinal slices from wild-type mice but not from p75NTR-null mice. Conversely, function-blocking proBDNF antibodies enhance excitability of pyramidal neurons and facilitate their persistent firing, and acute exposure to function-blocking p75NTR antibodies results in enhanced firing activity of pyramidal neurons. Genetic deletion of p75NTR specifically in neurons or during adulthood also induces enhanced excitability and persistent activity, indicating that the proBDNF-p75NTR signaling cascade functions within adult neurons to inhibit pyramidal activity. Phosphatidylinositol 4,5-bisphosphate (PIP2)-sensitive transient receptor potential canonical channels play a critical role in mediating persistent firing in the EC and we hypothesized that proBDNF-dependent p75NTR activation regulates PIP2 levels. Accordingly, proBDNF decreases cholinergic calcium responses in cortical neurons and affects carbachol-induced depletion of PIP2. Further, we show that the modulation of persistent firing by proBDNF relies on a p75NTR-Rac1-PI4K pathway. The hypothesis that proBDNF and p75NTR maintain network homeostasis in the adult CNS was tested in vivo and we report that p75NTR-null mice show improvements in working memory but also display an increased propensity for severe seizures. We propose that the proBDNF-p75NTR axis controls pyramidal neuron excitability and persistent activity to balance EC performance with the risk of runaway activity. SIGNIFICANCE STATEMENT: Persistent firing of entorhinal cortex (EC) pyramidal neurons is required for working memory. We report here that pro-brain-derived neurotrophic factor (proBDNF) activates p75NTR to induce a Rac1-dependent and phosphatidylinositol 4,5-bisphosphate-dependent signaling cascade that suppresses persistent activity. Conversely, using loss-of-function approaches, we find that endogenous proBDNF or p75NTR activation strongly decreases pyramidal neuron excitability and persistent firing, suggesting that a physiological role of this proBDNF-p75NTR cascade may be to regulate working memory in vivo. Consistent with this, mice rendered null for p75NTR during adulthood show improvements in working memory but also display an increased propensity for severe seizures. We propose that by attenuating EC network performance, the proBDNF-p75NTR signaling cascade reduces the probability of epileptogenesis.


Asunto(s)
Potenciales de Acción/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/citología , Neuronas/fisiología , Precursores de Proteínas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Aminoquinolinas/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/farmacología , Carbacol/farmacología , Células Cultivadas , Agonistas Colinérgicos/farmacología , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pentilenotetrazol/toxicidad , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Pilocarpina/toxicidad , Precursores de Proteínas/genética , Precursores de Proteínas/farmacología , Pirimidinas/farmacología , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/inmunología , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/fisiopatología
19.
J Vis Exp ; (89)2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25046441

RESUMEN

Neuronal axons use specific mechanisms to mediate extension, maintain integrity, and induce degeneration. An appropriate balance of these events is required to shape functional neuronal circuits. The protocol described here explains how to use cell culture inserts bearing a porous membrane (filter) to obtain large amounts of pure axonal preparations suitable for examination by conventional biochemical or immunocytochemical techniques. The functionality of these filter inserts will be demonstrated with models of developmental pruning and Wallerian degeneration, using explants of embryonic dorsal root ganglion. Axonal integrity and function is compromised in a wide variety of neurodegenerative pathologies. Indeed, it is now clear that axonal dysfunction appears much earlier in the course of the disease than neuronal soma loss in several neurodegenerative diseases, indicating that axonal-specific processes are primarily targeted in these disorders. By obtaining pure axonal samples for analysis by molecular and biochemical techniques, this technique has the potential to shed new light into mechanisms regulating the physiology and pathophysiology of axons. This in turn will have an impact in our understanding of the processes that drive degenerative diseases of the nervous system.


Asunto(s)
Axones/fisiología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Separación Celular/instrumentación , Separación Celular/métodos , Células Receptoras Sensoriales/citología , Animales , Femenino , Filtración/instrumentación , Filtración/métodos , Ganglios Espinales/citología , Ratones , Embarazo
20.
Handb Exp Pharmacol ; 220: 193-221, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24668474

RESUMEN

The neurotrophins play crucial roles regulating survival and apoptosis in the developing and injured nervous system. The four neurotrophins exert profound and crucial survival effects on developing peripheral neurons, and their expression and action is intimately tied to successful innervation of peripheral targets. In the central nervous system, they are dispensable for neuronal survival during development but support neuronal survival after lesion or other forms of injury. Neurotrophins also regulate apoptosis of both peripheral and central neurons, and we now recognize that there are regulatory advantages to having the same molecules regulate life and death decisions. This chapter examines the biological contexts in which these events take place and highlights the specific ligands, receptors, and signaling mechanisms that allow them to occur.


Asunto(s)
Apoptosis , Supervivencia Celular , Factores de Crecimiento Nervioso/fisiología , Animales , Humanos , Factor de Crecimiento Nervioso/fisiología , Precursores de Proteínas/fisiología , Receptor de Factor de Crecimiento Nervioso/fisiología , Receptor trkA/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...