Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Hum Neurosci ; 18: 1349477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646163

RESUMEN

Introduction: Physical activity influences psychological well-being. This study aimed to determine the impact of exercise intensity on psychological well-being and alterations in emotion-related brain functional connectivity (FC). Methods: Twenty young, healthy, trained athletes performed a low- and high-intensity interval exercise (LIIE and HIIE) as well as a control condition in a within-subject crossover design. Before and after each condition, Positive And Negative Affect Scale (PANAS) was assessed as well as resting-state functional MRI (rs-fMRI). Voxel-wise FC was examined for bilateral amygdala seed region to whole-brain and emotion-related anatomical regions (e.g., insula, temporal pole, precuneus). Data analyses were performed using linear mixed-effect models with fixed factors condition and time. Results: The PANAS Positive Affect scale showed a significant increase after LIIE and HIIE and a significant reduction in Negative Affect after the control condition. In rs-fMRI, no significant condition-by-time interactions were observed between the amygdala and whole brain. Amygdala-precuneus FC analysis showed an interaction effect, suggesting reduced post-exercise anticorrelation after the control condition, but stable, or even slightly enhanced anticorrelation for the exercise conditions, especially HIIE. Discussion: In conclusion, both LIIE and HIIE had positive effects on mood and concomitant effects on amygdala-precuneus FC, particularly after HIIE. Although no significant correlations were found between amygdala-precuneus FC and PANAS, results should be discussed in the context of affective disorders in whom abnormal amygdala-precuneus FC has been observed.

2.
Brain Cogn ; 177: 106156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613926

RESUMEN

Acute physical activity influences cognitive performance. However, the relationship between exercise intensity, neural network activity, and cognitive performance remains poorly understood. This study examined the effects of different exercise intensities on resting-state functional connectivity (rsFC) and cognitive performance. Twenty male athletes (27.3 ± 3.6 years) underwent cycling exercises of different intensities (high, low, rest/control) on different days in randomized order. Before and after, subjects performed resting-state functional magnetic resonance imaging and a behavioral Attention Network Test (ANT). Independent component analysis and Linear mixed effects models examined rsFC changes within ten resting-state networks. No significant changes were identified in ANT performance. Resting-state analyses revealed a significant interaction in the Left Frontoparietal Network, driven by a non-significant rsFC increase after low-intensity and a significant rsFC decrease after high-intensity exercise, suggestive of an inverted U-shape relationship between exercise intensity and rsFC. Similar but trend-level rsFC interactions were observed in the Dorsal Attention Network (DAN) and the Cerebellar Basal Ganglia Network. Explorative correlation analysis revealed a significant positive association between rsFC increases in the right superior parietal lobule (part of DAN) and better ANT orienting in the low-intensity condition. Results indicate exercise intensity-dependent subacute rsFC changes in cognition-related networks, but their cognitive-behavioral relevance needs further investigation.


Asunto(s)
Cognición , Ejercicio Físico , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Masculino , Imagen por Resonancia Magnética/métodos , Adulto , Ejercicio Físico/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Cognición/fisiología , Adulto Joven , Atención/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Descanso/fisiología
3.
Front Neuroimaging ; 3: 1332384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455686

RESUMEN

Introduction: Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses. Methods: Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with "reward" and "emotion." Results: Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and µ-opioidergic receptor distributions within the 'reward' network. Discussion: These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.

4.
Commun Biol ; 7(1): 271, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443439

RESUMEN

Physical exercise studies are generally underrepresented in young adulthood. Seventeen subjects were randomized into an intervention group (24.2 ± 3.9 years; 3 trainings/week) and 10 subjects into a passive control group (23.7 ± 4.2 years), over a duration of 6 months. Every two months, performance diagnostics, computerized spatial memory tests, and 3 Tesla magnetic resonance imaging were conducted. Here we find that the intervention group, compared to controls, showed increased cardiorespiratory fitness, spatial memory performance and subregional hippocampal volumes over time. Time-by-condition interactions occurred in right cornu ammonis 4 body and (trend only) dentate gyrus, left hippocampal tail and left subiculum. Increases in spatial memory performance correlated with hippocampal body volume changes and, subregionally, with left subicular volume changes. In conclusion, findings support earlier reports of exercise-induced subregional hippocampal volume changes. Such exercise-related plasticity may not only be of interest for young adults with clinical disorders of hippocampal function, but also for sedentary normal cohorts.


Asunto(s)
Composición Corporal , Memoria Espacial , Adulto Joven , Humanos , Adulto , Cognición , Ejercicio Físico , Hipocampo/diagnóstico por imagen
5.
Brain Imaging Behav ; 18(1): 66-72, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855956

RESUMEN

Structural and functional changes in cortical and subcortical regions have been reported in behavioral variant frontotemporal dementia (bvFTD), however, a multimodal approach may provide deeper insights into the neural correlates of neuropsychiatric symptoms. In this multicenter study, we measured cortical thickness (CTh) and subcortical volumes to identify structural abnormalities in 37 bvFTD patients, and 37 age- and sex-matched healthy controls. For seed regions with significant structural changes, whole-brain functional connectivity (FC) was examined in a sub-cohort of N = 22 bvFTD and N = 22 matched control subjects to detect complementary alterations in brain network organization. To explore the functional significance of the observed structural and functional deviations, correlations with clinical and neuropsychological outcomes were tested where available. Significantly decreased CTh was observed in the bvFTD group in caudal middle frontal gyrus, left pars opercularis, bilateral superior frontal and bilateral middle temporal gyrus along with subcortical volume reductions in bilateral basal ganglia, thalamus, hippocampus, and amygdala. Resting-state functional magnetic resonance imaging showed decreased FC in bvFTD between: dorsal striatum and left caudal middle frontal gyrus; putamen and fronto-parietal regions; pallidum and cerebellum. Conversely, bvFTD showed increased FC between: left middle temporal gyrus and paracingulate gyrus; caudate nucleus and insula; amygdala and parahippocampal gyrus. Additionally, cortical thickness in caudal, lateral and superior frontal regions as well as caudate nucleus volume correlated negatively with apathy severity scores of the Neuropsychiatry Inventory Questionnaire. In conclusion, multimodal structural and functional imaging indicates that fronto-striatal regions have a considerable influence on the severity of apathy in bvFTD.


Asunto(s)
Apatía , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/patología , Imagen por Resonancia Magnética/métodos , Encéfalo , Sustancia Gris/patología
6.
Front Neuroimaging ; 2: 1272061, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953746

RESUMEN

Introduction: Transcranial focused ultrasound therapy (tcFUS) offers precise thermal ablation for treating Parkinson's disease and essential tremor. However, the manual fine-tuning of fiber tracking and segmentation required for accurate treatment planning is time-consuming and demands expert knowledge of complex neuroimaging tools. This raises the question of whether a fully automated pipeline is feasible or if manual intervention remains necessary. Methods: We investigate the dependence on fiber tractography algorithms, segmentation approaches, and degrees of automation, specifically for essential tremor therapy planning. For that purpose, we compare an automatic pipeline with a manual approach that requires the manual definition of the target point and is based on FMRIB software library (FSL) and other open-source tools. Results: Our findings demonstrate the high feasibility of automatic fiber tracking and the automated determination of standard treatment coordinates. Employing an automatic fiber tracking approach and deep learning (DL)-supported standard coordinate calculation, we achieve anatomically meaningful results comparable to a manually performed FSL-based pipeline. Individual cases may still exhibit variations, often stemming from differences in region of interest (ROI) segmentation. Notably, the DL-based approach outperforms registration-based methods in producing accurate segmentations. Precise ROI segmentation proves crucial, surpassing the importance of fine-tuning parameters or selecting algorithms. Correct thalamus and red nucleus segmentation play vital roles in ensuring accurate pathway computation. Conclusion: This study highlights the potential for automation in fiber tracking algorithms for tcFUS therapy, but acknowledges the ongoing need for expert verification and integration of anatomical expertise in treatment planning.

7.
Parkinsonism Relat Disord ; 115: 105845, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37717502

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) of the thalamic ventral intermediate nucleus is an incisionless lesional treatment for essential tremor. OBJECTIVE: To examine relationships between tremor severity and functional connectivity in patients with essential tremor and to assess long-term changes in the tremor network after sonication of the ventral intermediate nucleus. METHODS: Twenty-one patients with essential tremor (70.33 ± 11.32 years) were included in the final analysis and underwent resting state functional magnetic resonance imaging at 3 T before and 6 months after treatment. Tremor severity (Fahn-Tolosa-Marin Clinical Rating Scale) was evaluated and functional connectivity was investigated using independent component analysis. RESULTS: MRgFUS of the thalamic ventral intermediate nucleus reduced contralateral tremor effectively. Multiple regression analysis revealed exclusively negative correlations between FC and tremor severity, notably in the right cerebellar lobe VI and the left cerebellar lobe VIIIa (cerebellar network), in the left occipital fusiform gyrus (lateral visual network), the anterior division of the left superior temporal gyrus (fronto-parieto-temporal network), and in the posterior division of the left parahippocampal gyrus and the bilateral lingual gyri (default mode network). Six months after treatment, increased functional connectivity was observed in almost all tremor-associated clusters, except the cluster localized in the left cerebellum. CONCLUSIONS: Our findings suggest that tremor-related activity in essential tremor extends beyond the classical cerebellar network, additionally involving areas related to visual processing. Functional restoration of network activity after sonication of the ventral intermediate nucleus is observed within the classical tremor network (cerebellum) and notably also in visual processing areas.


Asunto(s)
Temblor Esencial , Núcleos Talámicos Ventrales , Humanos , Núcleos Talámicos Ventrales/diagnóstico por imagen , Temblor/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Núcleos Talámicos
8.
Neuroimage Clin ; 39: 103477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37478584

RESUMEN

OBJECTIVES: Degeneration of the cholinergic basal forebrain nuclei (CBFN) system has been studied extensively in Alzheimer's disease (AD). White matter hyperintensities are a hallmark of aging as well as a common co-morbidity of AD, but their contribution to CBFN degeneration has remained unclear. Therefore, we explored the influence of white matter hyperintensities within cholinergic subcortical-cortical projection pathways on CBFN volumes and regional gray matter volumes in AD and age- and gender-matched controls. METHODS: We analyzed magnetic resonance images (MRI) from 42 patients with AD and 87 age- and gender-matched control subjects. We assessed the white matter hyperintensity burden within the cholinergic projection pathways using the Cholinergic Pathways Hyperintensities Scale (CHIPS), and applied probabilistic anatomical maps for the analysis of CBFN volumes, i.e. the Ch1-3 compartment and the Ch4 cell group (nucleus basalis of Meynert), by diffeomorphic anatomical registration using exponentiated lie algebra analysis of voxel-based morphometry. Using multiple linear regression analyses, we explored correlations between regional gray matter volumes and the extent of white matter hyperintensities or CBFN volumes in both groups. RESULTS: In AD, all CBFN volumes were significantly smaller than in controls, and white matter hyperintensity burden within the cholinergic projection pathways was not correlated with CBFN volume. In controls, white matter hyperintensity burden within the cholinergic projection pathways was inversely correlated with CBFN volume when corrected for sex and total intracranial volume, but this correlation was no longer significant after correction for age. Voxel-wise multiple linear regression analyses using threshold-free cluster enhancement revealed that in controls, cholinergic pathway hyperintensities correlated with gray matter loss in perisylvian areas, whereas the were no effects in AD. Moreover, we found that CBFN volumes correlated with distinct regional cortical atrophy patterns in both groups. CONCLUSION: Our results indicate that white matter hyperintensities and AD pathology contribute independently but additively to the degeneration of cholinergic basal forebrain structures. Whereas AD is primarily associated with CBFN volume loss, cholinergic degeneration associated with white matter hyperintensities appears to involve disruption of cholinergic cortical projection fibers with less pronounced effects on CBFN volumes.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Prosencéfalo Basal/diagnóstico por imagen , Prosencéfalo Basal/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética/métodos , Colinérgicos
10.
Brain Stimul ; 16(3): 879-888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37230462

RESUMEN

Magnetic resonance-guided focused ultrasound (MRgFUS) lesioning of the ventralis intermedius nucleus (VIM) has shown promise in treating drug-refractory essential tremor (ET). It remains unknown whether focal VIM lesions by MRgFUS have broader restorative effects on information flow within the whole-brain network of ET patients. We applied an information-theoretical approach based on intrinsic ignition and the concept of transfer entropy (TE) to assess the spatiotemporal dynamics after VIM-MRgFUS. Eighteen ET patients (mean age 71.44 years) underwent repeated 3T resting-state functional magnetic resonance imaging combined with Clinical Rating Scale for Tremor (CRST) assessments one day before (T0) and one month (T1) and six months (T2) post-MRgFUS, respectively. We observed increased whole brain ignition-driven mean integration (IDMI) at T1 (p < 0.05), along with trend increases at T2. Further, constraining to motor network nodes, we identified significant increases in information-broadcasting (bilateral supplementary motor area (SMA) and left cerebellar lobule III) and information-receiving (right precentral gyrus) at T1. Remarkably, increased information-broadcasting in bilateral SMA was correlated with relative improvement of the CRST in the treated hand. In addition, causal TE-based effective connectivity (EC) at T1 showed an increase from right SMA to left cerebellar lobule crus II and from left cerebellar lobule III to right thalamus. In conclusion, results suggest a change in information transmission capacity in ET after MRgFUS and a shift towards a more integrated functional state with increased levels of global and directional information flow.


Asunto(s)
Temblor Esencial , Humanos , Anciano , Temblor Esencial/terapia , Entropía , Imagen por Resonancia Magnética/métodos , Tálamo , Encéfalo/diagnóstico por imagen , Temblor , Resultado del Tratamiento
11.
Healthcare (Basel) ; 11(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36900693

RESUMEN

Physical activity (PA) plays an important role in affect processing. Studies describe the orbitofrontal cortex (OFC) as a major hub for emotion processing and the pathophysiology of affective disorders. Subregions of the OFC show diverse functional connectivity (FC) topographies, but the effect of chronic PA on subregional OFC FC still lacks scientific understanding. Therefore, we aimed at investigating the effects of regular PA on the FC topographies of OFC subregions in healthy individuals within a longitudinal randomized controlled exercise study. Participants (age: 18-35 years) were randomly assigned to either an intervention group (IG; N = 18) or a control group (CG; N = 10). Fitness assessments, mood questionnaires, and resting state functional magnetic resonance imaging (rsfMRI) were performed four times over the duration of 6 months. Using a detailed parcellation of the OFC, we created subregional FC topography maps at each time point and applied a linear mixed model to assess the effects of regular PA. The posterior-lateral right OFC showed a group and time interaction, revealing decreased FC with the left dorsolateral prefrontal cortex in the IG, while FC in the CG increased. Group and time interaction in the anterior-lateral right OFC with the right middle frontal gyrus was driven by increased FC in the IG. The posterior-lateral left OFC showed a group and time interaction based on differential change in FC to the left postcentral gyrus and the right occipital gyrus. This study emphasized regionally distinctive FC changes induced by PA within the lateral OFC territory, while providing aspects for further research.

12.
Front Aging Neurosci ; 14: 951022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034125

RESUMEN

Physical inactivity is documented as a health risk factor for chronic diseases, accelerated aging, and cognitive impairment. Physical exercise, on the other hand, plays an important role in healthy aging by promoting positive muscular, cardiovascular, and central nervous system adaptions. Prior studies on the effects of exercise training on cerebral perfusion have focused largely on elderly cohorts or patient cohorts, while perfusion effects of exercise training in young sedentary adults have not yet been fully assessed. Therefore, the present study examined the physiological consequence of a 6-month endurance exercise training on brain perfusion in 28 young sedentary adults randomly assigned to an intervention group (IG; regular physical exercise) or a control group (CG; without physical exercise). The IG performed an extensive running interval training three times per week over 6 months. Performance diagnostics and MRI were performed every 2 months, and training intensity was adapted individually. Brain perfusion measurements with pseudo-continuous arterial spin labeling were analyzed using the standard Oxford ASL pipeline. A significant interaction effect between group and time was found for right superior temporal gyrus (STG) perfusion, driven by an increase in the IG and a decrease in the CG. Furthermore, a significant time effect was observed in the right middle occipital region in the IG only. Perfusion increases in the right STG, in the ventral striatum, and in primary motor areas were significantly associated with increases in maximum oxygen uptake (VO2max). Overall, this study identified region-specific increases in local perfusion in a cohort of young adults that partly correlated with individual performance increases, hence, suggesting exercise dose dependency. Respective adaptations in brain perfusion are discussed in the context of physical exercise-induced vascular plasticity.

13.
Mov Disord ; 37(9): 1924-1929, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735240

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound of the ventral intermediate nucleus is a novel incisionless ablative treatment for essential tremor (ET). OBJECTIVE: The aim was to study the structural and functional network changes induced by unilateral sonication of the ventral intermediate nucleus in ET. METHODS: Fifteen essential tremor patients (66.2 ± 15.4 years) underwent probabilistic tractography and functional magnetic resonance imaging (MRI) during unilateral postural tremor-eliciting tasks using 3-T MRI before, 1 month (N = 15), and 6 months (N = 10) post unilateral sonication. RESULTS: Tractography identified tract-specific alterations within the dentato-thalamo-cortical tract (DTCT) affected by the unilateral lesion after sonication. Relative to the treated hand, task-evoked activation was significantly reduced in contralateral primary sensorimotor cortex and ipsilateral cerebellar lobules IV/V and VI, and vermis. Dynamic causal modeling revealed a significant decrease in excitatory drive from the cerebellum to the contralateral sensorimotor cortex. CONCLUSIONS: Thalamic lesions induced by sonication induce specific functional network changes within the DTCT, notably reducing excitatory input to ipsilateral sensorimotor cortex in ET. ©[2022] International Parkinson and Movement Disorder Society. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Temblor Esencial , Enfermedad de Parkinson , Humanos , Imagen por Resonancia Magnética , Tálamo/diagnóstico por imagen , Temblor
14.
Artículo en Inglés | MEDLINE | ID: mdl-35627616

RESUMEN

Acute exercise has beneficial effects on mood and is known to induce modulations in functional connectivity (FC) within the emotional network. However, the long-term effects of exercise on affective brain circuits remain largely unknown. Here, we investigated the effects of 6 months of regular exercise on mood, amygdala structure, and functional connectivity. This study comprised N = 18 healthy sedentary subjects assigned to an intervention group (IG; 23.9 ± 3.9 years; 3 trainings/week) and N = 10 subjects assigned to a passive control group (CG; 23.7 ± 4.2 years). At baseline and every two months, performance diagnostics, mood questionnaires, and structural and resting-state-fMRI were conducted. Amygdala-nuclei segmentation and amygdala-to-whole-brain FC analysis were performed. Linear mixed effects models and correlation analyses were conducted between FC, relVO2max, and mood scores. Data showed increases in relVO2max exclusively in the IG. Stronger anticorrelation in amygdala-precuneus FC was found, along with a stronger positive correlation in the amygdala-temporal pole FC in the IG after 4 and 6 months, while mood and amygdala volume did not reveal significant interactions. The relVO2max/amygdala-temporal pole FC correlated positively, and the amygdala-precuneus/amygdala-temporal pole FC correlated negatively. Findings suggest that exercise induced long-term modulations of the amygdala FC with the precuneus and temporal pole, shedding light on potential mechanisms by which exercise has positive influences on mood-related networks, typically altered in affective disorders.


Asunto(s)
Amígdala del Cerebelo , Mapeo Encefálico , Afecto , Amígdala del Cerebelo/diagnóstico por imagen , Ejercicio Físico , Terapia por Ejercicio , Humanos
15.
Parkinsonism Relat Disord ; 100: 6-12, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640415

RESUMEN

INTRODUCTION: Transcranial high-intensity Magnetic Resonance-guided Focused Ultrasound (tcMRgFUS) is a technique for treatment of severe, medication-refractory Essential Tremor (ET). We summarize 1-year follow-up results focusing on clinical and safety parameters and impacts on quality of life. METHODS: A total of 45 patients with severe, medication-refractory ET were treated with tcMRgFUS thalamotomy. 37 patients completed the clinical follow-up of 12 months. Tremor severity, disability and quality of life were measured using the Clinical Rating Scale for Tremor (CRST), surface electromyography, the Quality of Life in Essential Tremor Questionnaire (QUEST) and the Short-Form-36 questionnaire (SF-36). Depressive symptoms and cognitive function were assessed using standardized questionnaires. Electrophysiological measurements were conducted to evaluate possible effects on central motor and sensory pathways. RESULTS: 1 year after tcMRgFUS the mean tremor improvement on a hand-specific subscore of the CRST was 82%. The QUEST and SF-36 revealed an improvement of mental quality of life, especially in activities of daily living and psychosocial function; depressive symptoms decreased significantly. There was no worsening of cognitive function overt within the self-rating questionnaire; no prolongation of sensory evoked potentials or central motor conduction time occurred. Side effects were mostly classified as mild (78%) and transient (62%). CONCLUSIONS: TcMRgFUS for severe tremor has a distinct impact on quality of life and neuropsychological symptoms. Self-assessments of cognitive function revealed stable outcomes 1 year after tcMRgFUS. No prolongation of sensory or motor conduction time were found in neurophysiology measures. Side effects occurred in 78% of treated patients but were mostly transient and mild.


Asunto(s)
Temblor Esencial , Actividades Cotidianas , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Calidad de Vida , Tálamo , Resultado del Tratamiento , Temblor/terapia
17.
Parkinsonism Relat Disord ; 91: 105-108, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562715

RESUMEN

INTRODUCTION: The ventral intermediate nucleus of the thalamus (VIM) is an important relay station receiving cerebellar and pallidal fiber tracts. Data on structural visualization of the VIM however is limited and uncertainty prevails to what extent lesional approaches to treat tremor affect the VIM itself or passing tracts. The aim of the study was to analyze the localization of individual lesions with respect to the VIM and the cerebello-thalamic tract (CTT). METHODS: We employed ultrahigh resolution (7 Tesla) MRI to delineate the VIM and performed 3 T-DTI-imaging pre- and post-interventional in seven ET patients undergoing transcranial magnetic resonance guided focused ultrasound (tcMRgFUS). Tremor improvement was measured using a modified subscore of the Clinical Rating Scale for Tremor. RESULTS: All subjects showed substantial tremor improvement (88.5%, range 80.7%-94,8%) after tcMRgFUS. We found only a minor overlap of the lesions with the VIM (4%, range 1%-7%) but a larger overlap with the CTT (43%, range 23%-60%) in all subjects. CONCLUSIONS: Lesions within the CTT rather than the VIM seem to drive the tremorlytic response and clinical improvement in tcMRgFUS.


Asunto(s)
Cerebelo/diagnóstico por imagen , Temblor Esencial/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tálamo/diagnóstico por imagen , Núcleos Talámicos Ventrales/diagnóstico por imagen , Anciano , Cerebelo/patología , Temblor Esencial/patología , Temblor Esencial/terapia , Femenino , Ultrasonido Enfocado de Alta Intensidad de Ablación , Humanos , Masculino , Persona de Mediana Edad , Tálamo/patología , Resultado del Tratamiento , Núcleos Talámicos Ventrales/patología
18.
J Psychiatr Res ; 129: 129-140, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912593

RESUMEN

Previous studies in cohorts of Tourette syndrome (TS) or obsessive-compulsive disorder (OCD) patients have not clarified whether these two disorders represent two clinical conditions or they are distinct clinical phenotypes of a common disease spectrum. The study aimed to compare functional connectivity (FC) patterns in a pediatric drug-naive cohort of 16 TS patients without any comorbidity (TS), 14 TS patients with OCD (TS + OCD), and 10 pure OCD patients as well as 11 matched controls that underwent resting state fMRI. Via independent component analysis, we examined FC in the basal ganglia (BGN), sensorimotor (SMN), cerebellum (CBN), frontoparietal (FPN), default-mode (DMN), orbitofrontal (OBFN), and salience (SAN) networks among the above cohorts and their association with clinical measures. Compared to controls, TS and TS + OCD patients showed higher FC in the BGN, SMN, CBN and DMN and lower FC in the FPN and SAN. The TS and TS + OCD groups showed comparable FC in all networks. In contrast to controls, OCD patients exhibited increased FC in the BGN, SMN, CBN, DMN, FPN, and SAN. OCD patients also showed higher FC in CBN and FPN when compared with TS and TS + OCD patients both separately and as one group. Tic severity negatively correlated with FC in CBN and FPN in the TS group, while the compulsiveness scores positively correlated with the same two networks in OCD patients. Our findings suggest common FC changes in TS and TS + OCD patients. In contrast, OCD is characterized by a distinctive pattern of FC changes prominently involving the CBN and FPN.


Asunto(s)
Trastorno Obsesivo Compulsivo , Preparaciones Farmacéuticas , Síndrome de Tourette , Niño , Conducta Compulsiva , Humanos , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Síndrome de Tourette/diagnóstico por imagen
19.
Brain Behav ; 10(10): e01784, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32772512

RESUMEN

INTRODUCTION: Sex differences modulate catechol-O-methyltransferase (COMT) genotype effect at a synaptic dopamine level, which influences brain function as well as cognitive performance. In this study, we investigated how COMT Val158 Met polymorphism and sex affect intrinsic functional connectivity and memory. METHODS: Intrinsic functional networks were extracted using independent component analysis of resting-state functional magnetic resonance imaging data from 186 healthy young COMT-genotyped participants. The association of these functional networks and memory function was tested to investigate whether the effect of COMT × sex interaction influences the association of intrinsic functional connectivity and memory performance. Quadratic curve fit estimation was used to examine the relationship between functional connectivity and speculative dopamine level among groups. RESULTS: COMT MM/MV carriers, relative to VV carriers, showed increased functional connectivity in left superior parietal lobule and right inferior frontal gyrus. Further, male MM/MV carriers showed significant higher mean functional connectivity in left inferior parietal lobule relative to male VV carriers and female MM/MV carriers, which was associated with worse immediate verbal recall performance. Additionally, the relationship between inferior parietal lobule functional connectivity and speculative dopamine level among groups fits the quadratic curve. CONCLUSIONS: These findings suggest that the interaction of COMT genotype and sex might regulate synaptic dopaminergic concentrations and influence the association of intrinsic functional connectivity and immediate verbal memory in left inferior parietal lobule.


Asunto(s)
Catecol O-Metiltransferasa , Cognición , Catecol O-Metiltransferasa/genética , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Polimorfismo Genético , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...