Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168423

RESUMEN

Objective: Chronic rhinosinusitis (CRS) impacts an estimated 5% to 15% of people worldwide, incurring significant economic healthcare burden. There is a urgent need for the discovery of predictive biomarkers to improve treatment strategies and outcomes for CRS patients. Study design: Cohort study of CRS patients and healthy controls using blood samples. Setting: Out-patient clinics. Methods: Whole blood samples were collected for flow cytometric analysis. Mechanistic studies involved the transfection of human primary T cells and Jurkat cells. Results: Our analysis began with a 63-69 year-old female patient diagnosed with refractory CRS,. Despite undergoing multiple surgeries, she continually faced sinus infections. Whole exome sequencing pinpointed a heterozygous IL-12Rb1 mutation situated in the linker region adjacent to the cytokine binding domain. When subjected to IL-12 stimulation, the patient's CD4 T-cells exhibited diminished STAT4 phosphorylation. However, computer modeling or T-cell lines harboring the same IL-12 receptor mutation did not corroborate the hypothesis that IL-12Rb could be responsible for the reduced phosphorylation of STAT4 by IL-12 stimulation. Upon expanding our investigation to a broader CRS patient group using the pSTAT4 assay, we discerned a subset of refractory CRS patients with abnormally low STAT4 phosphorylation. The deficiency showed improvement both in-vitro and in-vivo after exposure to Latilactobacillus sakei (aka Lactobacillus sakei), an effect at least partially dependent on IL-12. Conclusion: In refractory CRS patients, an identified STAT4 defect correlates with poor clinical outcomes after sinus surgery, which can be therapeutically targeted by Latilactobacillus sakei treatment. Prospective double-blind placebo-controlled trials are needed to validate our findings.

2.
EBioMedicine ; 2(4): 324-333, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26029736

RESUMEN

Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditionings with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in opposite to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a novel mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...