Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 126: 463-476, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774197

RESUMEN

Critical-sized diaphysis defects are complicated by inherent sub-optimal healing conditions. The two-staged induced membrane technique has been used to treat these challenging defects since the 1980's. It involves temporary implantation of a membrane-inducing spacer and subsequent bone graft defect filling. A single-staged, graft-independent technique would reduce both socio-economic costs and patient morbidity. Our aim was to enable such single-staged approach through development of a strong bioactive glass scaffold that could replace both the spacer and the graft filling. We constructed amorphous porous scaffolds of the clinically used bioactive glass S53P4 and evaluated them in vivo using a critical-sized defect model in the weight-bearing femur diaphysis of New Zealand White rabbits. S53P4 scaffolds and standard polymethylmethacrylate spacers were implanted for 2, 4, and 8 weeks. Induced membranes were confirmed histologically, and their osteostimulative activity was evaluated through RT-qPCR of bone morphogenic protein 2, 4, and 7 (BMPs). Bone formation and osseointegration were examined using histology, scanning electron microscopy, energy-dispersive X-ray analysis, and micro-computed tomography imaging. Scaffold integration, defect union and osteosynthesis were assessed manually and with X-ray projections. We demonstrated that S53P4 scaffolds induce osteostimulative membranes and produce osseointegrative new bone formation throughout the scaffolds. We also demonstrated successful stable scaffold integration with early defect union at 8 weeks postoperative in critical-sized segmental diaphyseal defects with implanted sintered amorphous S53P4 scaffolds. This study presents important considerations for future research and the potential of the S53P4 bioactive glass as a bone substitute in large diaphyseal defects. STATEMENT OF SIGNIFICANCE: Surgical management of critical-sized diaphyseal defects involves multiple challenges, and up to 10% result in delayed or non-union. The two-staged induced membrane technique is successfully used to treat these defects, but it is limited by the need of several procedures and bone graft. Repeated procedures increase costs and morbidity, while grafts are subject to donor-site complications and scarce availability. To transform this two-staged technique into one graft-independent procedure, we developed amorphous porous scaffolds sintered from the clinically used bioactive glass S53P4. This work constitutes the first evaluation of such scaffolds in vivo in a critical-sized diaphyseal defect in the weight-bearing rabbit femur. We provide important knowledge and prospects for future development of sintered S53P4 scaffolds as a bone substitute.


Asunto(s)
Sustitutos de Huesos , Osteogénesis , Andamios del Tejido , Animales , Proteínas Morfogenéticas Óseas , Regeneración Ósea , Diáfisis , Vidrio , Conejos , Microtomografía por Rayos X
2.
Eur Cell Mater ; 41: 15-30, 2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389745

RESUMEN

Bioactive glasses (BAG) are used as bone-graft substitutes in orthopaedic surgery. A specific BAG scaffold was developed by sintering BAG-S53P4 granules. It is hypothesised that this scaffold can be used as a bone substitute to fill bone defects and induce a bioactive membrane (IM) around the defect site. Beyond providing the scaffold increased mechanical strength, that the initial inflammatory reaction and subsequent IM formation can be enhanced by coating the scaffolds with poly(DL-lactide-co-glycolide) (PLGA) is also hypothesised. To study the immunomodulatory effects, BAG-S53P4 (± PLGA) scaffolds were placed on monolayers of primary human macrophage cultures and the production of various pro- and anti-inflammatory cytokines was assessed using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and ELISA. To study the osteogenic effects, BAG-S53P4 (± PLGA) scaffolds were cultured with rabbit mesenchymal stem cells and osteogenic differentiation was evaluated by RT-qPCR and matrix mineralisation assays. The scaffold ion release was quantified and the BAG surface reactivity visualised. Furthermore, the pH of culture media was measured. BAG-S53P4 scaffolds had both anti-inflammatory and osteogenic properties that were likely attributable to alkalinisation of the media and ion release from the scaffold. pH change, ion release, and immunomodulatory properties of the scaffold could be modulated by the PLGA coating. Contrary to the hypothesis, the coating functioned by attenuating the BAG surface reactions and subsequent anti-inflammatory properties, rather than inducing an elevated inflammatory response compared to BAG-S53P4 alone. These results further validated the use of BAG-S53P4 (± PLGA) scaffolds as bone substitutes and indicate that scaffold properties can be tailored to a specific clinical need.


Asunto(s)
Sustitutos de Huesos , Células Madre Mesenquimatosas , Animales , Antiinflamatorios/farmacología , Diferenciación Celular , Vidrio , Osteogénesis , Conejos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...