Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Negl Trop Dis ; 17(7): e0011486, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498944

RESUMEN

The present study explicitly evaluated the genetic structure of Aedes aegypti Linn, the vector of dengue, chikungunya, and Zika viruses, across different geo-climatic zones of India and also elucidated the impact of ecological and topographic factors. After data quality checks and removal of samples with excess null alleles, the final analysis was performed on 589 individual samples using 10 microsatellite markers. Overall findings of this study suggested that, Ae. aegypti populations are highly diverse with moderate genetic differentiation between them. Around half of the populations (13 out of 22) formed two genetic clusters roughly associated with geographical regions. The remaining nine populations shared genetic ancestries with either one or both of the clusters. A significant relationship between genetic and geographic distance was observed, indicating isolation by distance. However, spatial autocorrelation analysis predicted the signs of long-distance admixture. Post-hoc environmental association analysis showed that 52.7% of genetic variations were explained by a combination of climatic and topographic factors, with latitude and temperature being the best predictors. This study indicated that though overall genetic differentiation among Ae. aegypti populations across India is moderate (Fst = 0.099), the differences between the populations are developing due to the factors associated with geographic locations. This study improves the understanding of the Ae. aegypti population structure in India that may assist in predicting mosquito movements across the geo-climatic zones, enabling effective control strategies and assessing the risk of disease transmission.


Asunto(s)
Aedes , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Variación Genética , Mosquitos Vectores/genética , Aedes/genética , Geografía , Temperatura , Dengue/epidemiología
2.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670470

RESUMEN

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Mosquitos Vectores , Salud Pública , Teorema de Bayes , Control de Mosquitos/métodos , Piretrinas/farmacología , Resistencia a los Insecticidas , Bioensayo , Organización Mundial de la Salud
3.
Malar J ; 22(1): 30, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707886

RESUMEN

BACKGROUND: Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS: A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION: This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Butóxido de Piperonilo , Piretrinas , Animales , Humanos , Côte d'Ivoire , Resistencia a los Insecticidas , Malaria/prevención & control , Control de Mosquitos/métodos , Butóxido de Piperonilo/farmacología , Estudios Prospectivos , Piretrinas/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Tanzanía
4.
Environ Sci Pollut Res Int ; 29(47): 71326-71337, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35595904

RESUMEN

Aedes aegypti is the main vector of yellow fever, chikungunya, Zika, and dengue worldwide and is managed by using chemical insecticides. Though effective, their indiscriminate use brings in associated problems on safety to non-target and the environment. This supports the use of plant-based essential oil (EO) formulations as they are safe to use with limited effect on non-target organisms. Quick volatility and degradation of EO are a hurdle in its use; the present study attempts to develop nanoemulsions (NE) of Trachyspermum ammi EO and its constituent thymol using Tween 80 as surfactant by ultrasonication method. The NE of EO had droplet size ranging from 65 ± 0.7 to 83 ± 0.09 nm and a poly dispersity index (PDI) value of 0.18 ± 0.003 to 0.20 ± 0.07 from 1 to 60 days of storage. The NE of thymol showed a droplet size ranging from 167 ± 1 to 230 ± 1 nm and PDI value of 0.30 ± 0.03 to 0.40 ± 0.008 from 1 to 60 days of storage. The droplet shape of both NEs appeared spherical under a transmission electron microscope (TEM). The larvicidal effect of NEs of EO and thymol was better than BEs (Bulk emulsion) of EO and thymol against Ae. aegypti. Among the NEs, thymol (LC50 34.89 ppm) had better larvicidal action than EO (LC50 46.73 ppm). Exposure to NEs of EO and thymol causes the shrinkage of the larval cuticle and inhibited the acetylcholinesterase (AChE) activity in Ae. aegypti. Our findings show the enhanced effect of NEs over BEs which facilitate its use as an alternative control measure for Ae. aegypti.


Asunto(s)
Aedes , Ammi , Apiaceae , Insecticidas , Aceites Volátiles , Virus Zika , Acetilcolinesterasa , Ácidos Alcanesulfónicos , Animales , Emulsiones/farmacología , Insecticidas/química , Larva , Mosquitos Vectores , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Polisorbatos/farmacología , Tensoactivos/farmacología , Timol/farmacología
5.
Trop Med Int Health ; 26(4): 469-477, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423364

RESUMEN

OBJECTIVES: To evaluate the entomological efficacy and the residual activity of indoor residual spraying with Fludora® Fusion 562.5 WP-SB, a combination formulation containing clothianidin, a neonicotinoid and deltamethrin, a pyrethroid, against the main rural malaria vector, Anopheles culicifacies s.l., in India in a small-scale trial. METHODS: In three study villages, suitable households were randomly allocated to five treatments: Fludora® Fusion 562.5 WP-SB (target dose 225 mg active ingredient AI/m2 ); clothianidin 70 WG (target dose 200 mg AI/m2 ); K-Othrine 250 WG (deltamethrin, target dose 25 mg AI/m2 ); Ficam VC 80 WP-SB (bendiocarb, target dose 400 mg AI/m2 ) and unsprayed control. Insecticides were sprayed by hand compression sprayers with control flow valves and 8002E nozzles. Post-spray cone bioassays were done on insecticide-treated walls using a colonised, deltamethrin-resistant strain of An. culicifacies. Mosquitoes were collected from treated rooms by different methods. The insecticide content on filter papers collected from the sprayed walls was determined by chemical assay to assess the spray quality. RESULTS: The ratios of applied to target doses of insecticides were within 0.84 to 1.4, showing a good spray quality. The cone bioassays revealed residual action lasting 7 months for all insecticides without significant differences in mortality between different surfaces treated nor between the four treatment arms (P > 0.05). Considering all entomological parameters such as indoor resting density, excito-repellency, blood-feeding inhibition and delayed mortality, the overall efficacy of Fludora® Fusion WG-SB was equal or better compared with other insecticides. CONCLUSIONS: Fludora® Fusion showed overall equal or better efficacy than deltamethrin and bendiocarb alone against a pyrethroid-resistant malaria vector population and can be considered as an alternative product for management of pyrethroid resistance in malaria vectors.


Asunto(s)
Anopheles/efectos de los fármacos , Culicidae/efectos de los fármacos , Composición Familiar , Insecticidas/farmacología , Malaria , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Animales , Bioensayo , Guanidinas/farmacología , Humanos , Resistencia a los Insecticidas , Malaria/prevención & control , Malaria/transmisión , Neonicotinoides/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Tiazoles/farmacología
6.
J Vector Borne Dis ; 56(4): 339-344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33269734

RESUMEN

BACKGROUND & OBJECTIVES: Understanding of malaria vector distribution and influence of climatic environments is essential for devising control strategies. The aim of the study was to study the bionomics of prevalent malaria vectors in three different settings for development of evidence-based sustainable malaria control strategy with special reference to vector control. METHODS: Three villages with different eco-epidemiological settings like riverine-low malarious, riverine-high malarious and non-riverine high malarious villages were selected after baseline studies. Entomological aspects such as man hour density, per structure density, mosquito landing collections, sibling species identification, insecticide susceptibility status, parity rate, etc. were studied in these three villages following standard methods and techniques. The effect of these variables was analysed statistically. RESULTS: Mosquito collections revealed the presence of three malaria vectors in the study villages, namely Anopheles culicifacies s.l., An. fluviatilis s.l. and An. stephensi (Diptera: Culicidae) with varying proportions and seasonal abundance. Densities of the principal malaria vector, An. culicifacies varied seasonally. Anopheles culicifacies was found resistant to DDT (4%), malathion (5%), lambda-cyhalothrin (0.05%) and alpha-cypermethrin (0.1%). Peak density of An. culicifacies was found during post-monsoon months starting from August-September to December in the high malarious villages. INTERPRETATION & CONCLUSION: The main vector control interventions should be planned in the post-monsoon months in these villages and suitable insecticide resistance management strategy should be followed as An. culicifacies was found resistant to DDT, malathion, alpha-cypermethrin and lambda-cyhalothrin in the study area.


Asunto(s)
Anopheles/efectos de los fármacos , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Distribución Animal , Animales , Anopheles/fisiología , DDT/farmacología , Ecología , Femenino , Humanos , India/epidemiología , Resistencia a los Insecticidas , Insecticidas/farmacología , Malatión/farmacología , Masculino , Control de Mosquitos , Mosquitos Vectores/fisiología , Nitrilos/farmacología , Piretrinas/farmacología
7.
Malar J ; 17(1): 414, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409140

RESUMEN

BACKGROUND: Deltamethrin-impregnated, long-lasting insecticidal nets (LLINs) were distributed in the study area from November 2014 to January 2015 to evaluate their impact on malaria transmission in the presence of insecticide-resistant vectors. Studies were carried out in 16 selected clusters in Keshkal sub-district, Chhattisgarh State, India to monitor and characterize deltamethrin resistance in Anopheles culicifacies sensu lato. RESULTS: Deltamethrin susceptibility of An. culicifacies decreased in a post-LLIN survey compared to a pre-LLIN survey and was not significant (p > 0.05) while, the knockdown values showed significant increase (p < 0.05). Pre-exposure to piperonyl butoxide, triphenyl phosphate showed synergism against deltamethrin (p < 0.001). Biochemical assays showed significantly (p < 0.05) elevated monooxygenases in 3 of 5 clusters in post-LLIN survey-I that increased to 10 of 11 clusters in post-LLIN survey-II, while esterases were found significantly elevated in all clusters and both enzymes were involved in conferring pyrethroid resistance, not discounting the involvement of kdr (L1014L/S) gene that was heterozygous and at low frequency (4-5%). CONCLUSION: This field study, in a tribal district of India, after distribution of deltamethrin-impregnated LLINs showed decrease in deltamethrin susceptibility in An. culicifacies, a major vector of malaria in this study area and in India. Results indicated development of resistance as imminent with the increase in insecticide selection pressure. There is an urgent need to develop new vector control tools, with insecticide classes having novel mechanisms of resistance, to avoid or delay the onset of resistance. Regular insecticide resistance monitoring and mechanistic studies should be the priority for the malaria control programmes to suggest strategies for insecticide resistance management. The global commitment to eliminate malaria by 2030 needs various efforts that include development of combination vector control products and interventions and few are becoming available.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Control de Mosquitos/métodos , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/fisiología , India , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología
8.
Malar J ; 17(1): 385, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30359252

RESUMEN

BACKGROUND: The native gut microbiota of Anopheles mosquitoes is known to play a key role in the physiological function of its host. Interestingly, this microbiota can also influence the development of Plasmodium in its host mosquitoes. In recent years, much interest has been shown in the employment of gut symbionts derived from vectors in the control of vector-borne disease transmission. In this study, the midgut microbial diversity has been characterized among laboratory-reared adult Anopheles stephensi mosquitoes, from the colony created by rearing progeny of wild-caught mosquitoes (obtained from three different locations in southern India) for multiple generations, using 16S ribosomal RNA (rRNA) gene sequencing approach. Further, the influence of native midgut microbiota of mosquitoes on the development of rodent malaria parasite Plasmodium berghei in its host has been studied. METHODS: The microbial diversity associated with the midgut of An. stephensi mosquitoes was studied by sequencing V3 region of 16S ribosomal RNA (rRNA) gene. The influence of native midgut microbiota of An. stephensi mosquitoes on the susceptibility of the mosquitoes to rodent malaria parasite P. berghei was studied by comparing the intensity and prevalence of P. berghei infection among the antibiotic treated and untreated cohorts of mosquitoes. RESULTS: The analysis of bacterial diversity from the midguts of An. stephensi showed Proteobacteria as the most dominant population among the three laboratory-reared strains of An. stephensi studied. Major genera identified among these mosquito strains were Acinetobacter, Pseudomonas, Prevotella, Corynebacterium, Veillonella, and Bacillus. The mosquito infectivity studies carried out to determine the implication of total midgut microbiota on P. berghei infection showed that mosquitoes whose native microbiota cleared with antibiotics had increased susceptibility to P. berghei infection compared to the antibiotic untreated mosquitoes with its natural native microbiota. CONCLUSIONS: The use of microbial symbiont to reduce the competence of vectors involved in disease transmission has gained much importance in recent years as an emerging alternative approach towards disease control. In this context, the present study was aimed to identify the midgut microbiota composition of An. stephensi, and its effect on the development of P. berghei. Interestingly, the analysis of midgut microbiota from An. stephensi revealed the presence of genus Veillonella in Anopheles species for the first time. Importantly, the study also revealed the negative influence of total midgut microbiota on the development of P. berghei in three laboratory strains of An. stephensi, emphasizing the importance of understanding the gut microbiota in malaria vectors, and its relationship with parasite development in designing strategies to control malaria transmission.


Asunto(s)
Anopheles/microbiología , Anopheles/parasitología , Fenómenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Plasmodium berghei/fisiología , Animales , Animales de Laboratorio/microbiología , Animales de Laboratorio/parasitología , Bacterias/genética , Bacterias/crecimiento & desarrollo , Enfermedades Endémicas , Geografía , India , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ARN
9.
Indian J Med Res ; 147(3): 299-307, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29923520

RESUMEN

Background & objectives: Different formulations of Bacillus thuringiensis var. israelensis (Bti) have been tested against different mosquito vectors and other insects for their residual activity. In the present study, the efficacy and residual activity of a new formulation of Bti (Bactivec Suspension Concentrate) were evaluated against immature stages of Anopheles stephensi Liston (Diptera: Culicidae), Aedes aegypti Linnaeus (Diptera: Culicidae) and Culex quinquefasciatus Say (Diptera: Culicidae), in natural habitats in Phase II and Phase III in Bengaluru, India. Methods: Preferential breeding habitats of the mosquito species were selected and four dosages (0.25, 0.5, 1 and 2 ml/50 l) were tested in Phase II trial. Two most effective dosages, 0.5 and 1 ml/50 l were selected for Phase III trial. The evaluation was carried out essentially following the guidelines of the World Health Organization Pesticide Evaluation Scheme. Pre-treatment and post-treatment densities were recorded at regular intervals, and >80 per cent reduction in pupae was taken as the duration of effectiveness. Results: Bactivec SC treated at the dosage of 1 ml/50 l could produce 10-17 days efficacy (>80% reduction in pupae) in clean water habitats tested, whereas 0.5 ml/50 l dosage showed residual activity from 7 to 14 days against Ae. aegypti and An. stephensi in Phase III studies. In polluted water habitats, 4-7 days efficacy could be recorded against Cx. quinquefasciatus in Phase III. Interpretation & conclusions: The Bactivec SC formulation was operationally feasible and easy to handle. For the control of Anopheles and Aedes mosquitoes in freshwater habitats, 1 ml/50 l dosage was found effective, whereas in polluted water habitats against Cx. quinquefasciatus 5 ml/m2 was found effective.


Asunto(s)
Bacillus thuringiensis/efectos de los fármacos , Insecticidas/farmacología , Mosquitos Vectores , Aedes , Animales , Anopheles , Culex , India , Larva , Control de Mosquitos
11.
Malar J ; 16(1): 467, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149892

RESUMEN

BACKGROUND: Despite the known effectiveness of long-lasting insecticidal nets (LLINs) in providing protection against malaria, high level of ownership and use are very difficult to achieve and maintain. Nearly 40,000 LLINs were distributed in 2014 as an intervention tool against malaria transmission in 80 villages of Keshkal sub-district in Chhattisgarh, India. This study assessed LLIN coverage, access, utilization pattern, and key determinants for the net use 1 year after mass distribution. METHODS: In 2015, a cross-sectional household survey was carried out in 80 study clusters (whole village or part of village). From each cluster, 40 households were randomly selected and interviewed using a structured questionnaire adapted from the malaria indicator survey of Roll Back Malaria guidelines. Information on demographic characteristics, LLIN ownership, and its use on the night before the survey, and physical condition of LLINs were recorded. RESULTS: 2970 households were interviewed with a total of 15,003 individuals present in the households during the night before the survey. Nearly 98% of households had at least one LLIN and 59.4% of the surveyed population reportedly used an LLIN the previous night. LLIN use varied from 41 to 94% between the study clusters. Nearly 89% of the LLINs were found in good physical condition (without holes). However, proportion of household with at least one LLIN per two persons was only 39%. CONCLUSION: Universal coverage of LLINs was inadequate in the study clusters making it difficult for all household members to use an LLIN. LLIN use varied between clusters and was highest in children under 5 years of age. Health education campaigns and creating awareness about the benefit of sleeping under the LLINs in providing protection against malaria is required not only to high risk groups of pregnant women and children below 5 years of age but all the members of the family to have an epidemiological impact of this intervention at the community level. Relatively high net use despite poor access to LLINs indicates an overall desire to use nets when they are available. The main barrier to increased use of nets is the low coverage at household level.


Asunto(s)
Mosquiteros Tratados con Insecticida , Control de Mosquitos , Propiedad/estadística & datos numéricos , Estudios Transversales , Composición Familiar , India , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Control de Mosquitos/estadística & datos numéricos , Encuestas y Cuestionarios
12.
Malar J ; 14: 223, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26022085

RESUMEN

BACKGROUND: Indoor residual spraying (IRS) with different formulations of insecticides is being used for the control of mosquito vectors in many countries. In the present study, residual efficacy and duration of effectiveness of IRS with alpha-cypermethrin WG-SB (250 g AI/m2) formulation was compared with WP formulation (50 g AI/kg) in a small scale (Phase II) field trial. METHODS: Two dosages, i.e. 20 and 30 mg AI/m2, were used and the efficacy and duration of effectiveness was assessed on alpha-cypermethrin susceptible population of Anopheles stephensi. Four types of surfaces were selected, namely cement wall with distemper coating, cement wall with lime coating, mud wall with lime coating, and brick wall unpainted. Spraying was carried out with Hudson sprayer fitted with control flow valve. Bioassays were carried out at weekly and then fortnightly intervals. Chemical analysis of filter paper samples collected from the sprayed surfaces was done at Walloon Agricultural Research Institute, Gembloux, Belgium. RESULTS: Alpha-cypermethrin WG-SB showed residual efficacy (>80% mortality) for 13-15 weeks for the 20 mg/m2 dosage and 13-16 weeks for the 30 mg/m2 dosage, whereas alpha-cypermethrin WP showed residual efficacy for 11-15 weeks for the 20 mg/m2 dosage and 11-14 weeks for the 30 mg/m2 dosage on the surfaces tested. The average of the applied to target dose ratio ranged from 0.89 to 1.17 for alpha-cypermethrin WG-SB at 20 mg AI/m2, 0.83-1.80 for the WG-SB at 30 mg AI/m2, 0.87-1.66 for alpha-cypermethrin WP at 20 mg AI/m2, and 0.68-1.06 for WP at 30 mg AI/m2. No adverse events were reported, either by the spray men or the household inhabitants, during and after the spray operations. CONCLUSIONS: The results suggest that the dose of WG 30 mg/m2 gave slightly longer effective residual action against malaria vector (16 weeks) on most common indoor surfaces and could be used for effective control of Anopheles mosquitoes. The WG formulation was found to be easy to handle, no smell was reported during the spraying and was found to be operationally acceptable for indoor residual spraying.


Asunto(s)
Anopheles , Insectos Vectores , Insecticidas , Malaria/prevención & control , Control de Mosquitos , Piretrinas , Animales , Vivienda , India
13.
Indian J Med Res ; 142 Suppl: S64-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26905244

RESUMEN

BACKGROUND & OBJECTIVES: Due to ever growing insecticide resistance in mosquitoes to commonly used insecticides in many parts of the globe, there is always a need for introduction of new insecticides for the control of resistant vector mosquitoes. In this study, larvicidal and adulticidal efficacies of three neonicotinoids (imidacloprid, thiacloprid and thiamethoxam) were tested against resistant and susceptible populations of Anopheles stephensi Liston 1901, Aedes (Stegomyia) aegypti Linnaeus, and Culex quinquefasciatus Say (Diptera: Culicidae). METHODS: Laboratory-reared mosquito species were used. Insecticide susceptibility tests were done using standard WHO procedures and using diagnostic dosages of insecticide test papers and larvicides. Adulticidal efficacy of candidate insecticides was assessed using topical application method and larval bioassays were conducted using standard WHO procedure. RESULTS: The results of topical application on 3-5 day old female mosquitoes indicated that resistant strain of An. stephensi registered lower LC 50 values than the susceptible strain. Among the three insecticides tested, thiacloprid was found more effective than the other two insecticides. Culex quinquefasciatus registered lowest LC 50 for imidacloprid than the other two mosquito species tested. In larval bioassays, the LC 50 values registered for imidacloprid were in the order of Cx. quinquefasciatus < An. stephensi (SS) < An. stephensi (RR) < Ae. aegypti. In case of thiacloprid, the order of efficacy (LC 50 ) was Cx. quinquefasciatus < An. stephensi (SS) < An. stephensi (RR), whereas in case of thiamethoxam, the larvicidal efficacy was in the order of An. stephensi (RR) < An. stephensi (SS) < Cx. quinquefasciatus. INTERPRETATION & CONCLUSIONS: The present study indicated that insecticide resistant strains of mosquito species tested showed more susceptibility to the three neonicotinoids tested, and the possibility of using neonicotinoids for the control of resistant mosquitoes should be explored.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Malaria/epidemiología , Animales , Anopheles/genética , Femenino , Humanos , India , Insectos Vectores/efectos de los fármacos , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Larva/efectos de los fármacos , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos
14.
Malar J ; 11: 189, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22682024

RESUMEN

BACKGROUND: In the present study, Interceptor®, long-lasting polyester net, 75 denier and bursting strength of minimum 250 kPa coated with alpha-cypermethrin @ 200 mg/m² was evaluated for its efficacy in reducing the mosquito density, blood feeding inhibition and malaria incidence in a tribal dominated malaria endemic area in Chhattisgarh state, central India. Its durability, washing practices and usage pattern by the community was also assessed up to a period of three years. METHODS: The study was carried out in two phases. In the first phase (September 2006 to August 2007), 16 malaria endemic villages in district Kanker were randomized into three groups, viz. Interceptor net (LN), untreated polyester net (100 denier) and without net. Malaria cases were detected by undertaking fortnightly surveillance by home visits and treated as per the national drug policy. Mosquito collections were made by hand catch and pyrethrum space spray methods from human dwellings once every month. Slide positivity rate (SPR) and malaria incidence per 1000 population (PI) were compared between the three study arms to assess the impact of use of Interceptor nets. Simultaneously, wash resistance studies were carried out in the laboratory by doing cone bioassays on Interceptor LNs washed up to 20 times. Activities undertaken in second Phase (April 2008 to October 2009) after an interval of about 18 months post-net distribution included questionnaire based surveys at every six months, i.e. 18, 24, 30 and 36 months to observe durability, usage pattern of LNs and washing practices by the community. After 36 months of field use, 30 nets were retrieved and sampled destructively for chemical analysis. RESULTS: Interceptor nets were found effective in reducing the density, parity rate and blood feeding success rate of main malaria vector Anopheles culicifacies as compared to that in untreated net and no net villages. SPR in LN villages was 3.7% as compared to 6.5% in untreated and 11% in no net villages. PI in LN villages was 16.4 in comparison to 24.8 and 44.2 in untreated polyester net and no net villages respectively. In surveys carried out after three years of initial distribution, 78.7% (737/936) nets were still in possession with the households, of which 68% were used every night. An. culicifacies mortality was >80% in cone bioassays done on LNs washed up to 20 times in laboratory. Mean alpha-cypermethrin content was 43.5 ± 31.7 mg/m² on Interceptor LNs withdrawn after three years of household use against the baseline specification of 200 mg/m². A gradual increase in the proportion of holed nets was observed with the increased period of usage. CONCLUSION: Interceptor nets were highly effective in reducing vector densities as well as malaria incidence in the study villages. Availability of 78% nets with the households in usable condition clearly indicated durability of Interceptor LNs up to three years in the rural setting of India. The nets were found to contain an effective concentration of alpha-cypermethrin against malaria vector after three years of household use.


Asunto(s)
Anopheles/crecimiento & desarrollo , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Piretrinas/farmacología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anopheles/fisiología , Niño , Preescolar , Conducta Alimentaria , Humanos , Incidencia , India , Lactante , Recién Nacido , Malaria/epidemiología , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...