Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 25(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204409

RESUMEN

Comprehensive oncology research suggests an important role of phytochemicals or whole plant foods in the modulation of signaling pathways associated with anticancer action. The goal of this study is to assess the anticancer activities of Cinnamomum zeylanicum L. using rat, mouse, and cell line breast carcinoma models. C. zeylanicum (as bark powder) was administered in the diet at two concentrations of 0.1% (w/w) and 1% (w/w) during the whole experiment in chemically induced rat mammary carcinomas and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular evaluations of mammary gland tumors in rodents were carried out. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were performed. The dominant metabolites present in the tested C. zeylanicum essential oil (with relative content over 1%) were cinnamaldehyde, cinnamaldehyde dimethyl acetal, cinnamyl acetate, eugenol, linalool, eucalyptol, limonene, o-cymol, and α-terpineol. The natural mixture of mentioned molecules demonstrated significant anticancer effects in our study. In the mouse model, C. zeylanicum at a higher dose (1%) significantly decreased tumor volume by 44% when compared to controls. In addition, treated tumors showed a significant dose-dependent decrease in mitotic activity index by 29% (0.1%) and 45.5% (1%) in comparison with the control group. In rats, C. zeylanicum in both doses significantly reduced the tumor incidence by 15.5% and non-significantly suppressed tumor frequency by more than 30% when compared to controls. An evaluation of the mechanism of anticancer action using valid oncological markers showed several positive changes after treatment with C. zeylanicum. Histopathological analysis of treated rat tumor specimens showed a significant decrease in the ratio of high-/low-grade carcinomas compared to controls. In treated rat carcinomas, we found caspase-3 and Bax expression increase. On the other hand, we observed a decrease in Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. Assessment of epigenetic changes in rat tumor cells in vivo showed a significant decrease in lysine methylation status of H3K4m3 and H3K9m3 in the high-dose treated group, a dose-dependent increase in H4K16ac levels (H4K20m3 was not changed), down-regulations of miR21 and miR155 in low-dose cinnamon groups (miR22 and miR34a were not modulated), and significant reduction of the methylation status of two out of five gene promoters-ATM and TIMP3 (PITX2, RASSF1, PTEN promoters were not changed). In vitro study confirmed results of animal studies, in that the essential oil of C. zeylanicum displayed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using MTS, BrdU, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). As a conclusion, C. zeylanicum L. showed chemopreventive and therapeutic activities in animal breast carcinoma models that were also significantly confirmed by mechanistic evaluations in vitro and in vivo.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Cinnamomum zeylanicum/química , Aceites Volátiles/administración & dosificación , Corteza de la Planta/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Histonas/metabolismo , Humanos , Células MCF-7 , Ratones , MicroARNs/genética , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/administración & dosificación , Aceites de Plantas/química , Aceites de Plantas/farmacología , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biomolecules ; 9(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817446

RESUMEN

Natural substances of plant origin exert health beneficiary efficacy due to the content of various phytochemicals. Significant anticancer abilities of natural compounds are mediated via various processes such as regulation of a cell's epigenome. The potential antineoplastic activity of plant natural substances mediated by their action on posttranslational histone modifications (PHMs) is currently a highly evaluated area of cancer research. PHMs play an important role in maintaining chromatin structure and regulating gene expression. Aberrations in PHMs are directly linked to the process of carcinogenesis in cancer such as breast (BC), prostate (PC), and colorectal (CRC) cancer, common malignant diseases in terms of incidence and mortality among both men and women. This review summarizes the effects of plant phytochemicals (isolated or mixtures) on cancer-associated PHMs (mainly modulation of acetylation and methylation) resulting in alterations of chromatin structure that are related to the regulation of transcription activity of specific oncogenes, which are crucial in the development of BC, PC, and CRC. Significant effectiveness of natural compounds in the modulation of aberrant PHMs were confirmed by a number of in vitro or in vivo studies in preclinical cancer research. However, evidence concerning PHMs-modulating abilities of plant-based natural substances in clinical trials is insufficient.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cromatina/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Cromatina/efectos de los fármacos , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/metabolismo , Epigénesis Genética/efectos de los fármacos , Femenino , Código de Histonas/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos
3.
J Cancer Res Clin Oncol ; 145(7): 1665-1679, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31127362

RESUMEN

PURPOSE: Phytochemicals are naturally occurring plant-derived compounds and some of them have the potential to serve as anticancer drugs. Based on recent evidence, aberrantly regulated expression of microRNAs (miRNAs) is closely associated with malignancy. MicroRNAs are characterized as small non-coding RNAs functioning as posttranscriptional regulators of gene expression. Accordingly, miRNAs regulate various target genes, some of which are involved in the process of carcinogenesis. RESULTS: This comprehensive review emphasizes the anticancer potential of phytochemicals, either isolated or in combination, mediated by miRNAs. The ability to modulate the expression of miRNAs demonstrates their importance as regulators of tumorigenesis. Phytochemicals as anticancer agents targeting miRNAs are widely studied in preclinical in vitro and in vivo research. Unfortunately, their anticancer efficacy in targeting miRNAs is less investigated in clinical research. CONCLUSIONS: Significant anticancer properties of phytochemicals as regulators of miRNA expression have been proven, but more studies investigating their clinical relevance are needed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , MicroARNs/biosíntesis , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Humanos , MicroARNs/genética , Neoplasias/patología
4.
Int J Mol Sci ; 20(7)2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970626

RESUMEN

Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters-ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Aceites Volátiles/administración & dosificación , Aceites de Plantas/administración & dosificación , Thymus (Planta)/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Aceites Volátiles/farmacología , Fitoterapia , Aceites de Plantas/farmacología , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
EPMA J ; 9(4): 403-419, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30538792

RESUMEN

In contrast to the genetic component in mammary carcinogenesis, epigenetic alterations are particularly important for the development of sporadic breast cancer (BC) comprising over 90% of all BC cases worldwide. Most of the DNA methylation processes are physiological and essential for human cellular and tissue homeostasis, playing an important role in a number of key mechanisms. However, if dysregulated, DNA methylation contributes to pathological processes such as cancer development and progression. A global hypomethylation of oncogenes and hypermethylation of tumor-suppressor genes are characteristic of most cancer types. Moreover, histone chemical modifications and non-coding RNA-associated multi-gene controls are considered as the key epigenetic mechanisms governing the cellular homeostasis and differentiation states. A number of studies demonstrate dietary plant products as actively affecting the development and progression of cancer. "Nutri-epigenetics" focuses on the influence of dietary agents on epigenetic mechanisms. This approach has gained considerable attention; since in contrast to genetic alterations, epigenetic modifications are reversible affect early carcinogenesis. Currently, there is an evident lack of papers dedicated to the phytochemicals/plant extracts as complex epigenetic modulators, specifically in BC. Our paper highlights the role of plant natural compounds in targeting epigenetic alterations associated with BC development, progression, as well as its potential chemoprevention in the context of preventive medicine. Comprehensive measures are stated with a great potential to advance the overall BC management in favor of predictive, preventive, and personalized medical services and can be considered as "proof-of principle" model, for their potential application to other multifactorial diseases.

6.
Biomed Pharmacother ; 99: 51-58, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29324312

RESUMEN

Long non-coding RNAs (lncRNAs) are DNA transcripts longer than 200 nucleotides without protein-coding potential. As they are key regulators of gene expression at chromatic, transcriptional and posttranscriptional level, they play important role in various biological and pathological processes. Dysregulation of lncRNAs has been observed in several diseases including cancer. Breast cancer is heterogeneous disease with many molecular subtypes specific in different prognosis and treatment responses. Hypoxia, a common micro-environmental feature of rapidly growing tumour is associated with metastases, recurrences and resistance to therapy. Aberrant expression of hypoxia related lncRNAs significantly correlates with poor outcomes in cancer patients, as the lncRNAs play an important regulatory role in the breast cancer-cell survival. Thus, a better understanding of lncRNAs role in the hypoxic conditions of breast cancer is crucial for precise understanding of the tumorigenesis, disease features and poor clinical outcome, especially in highly aggressive breast cancer subtypes (HER2-positive and triple-negative types). Moreover, lncRNAs may represent tumour marker predicting prognosis and therapeutic targets improving precise and personalized therapy for better patient´s survival. In this review, we summarize the recent information on lncRNAs in breast cancer with special focus on the hypoxia-responsive lncRNAs and their potential impact on the prognosis, therapy algorithms and individual outcomes. Presented data helps in better understanding of the specific mechanisms predicting new therapeutic agents and strategies for the pharmacological intervention.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/terapia , Hipoxia de la Célula/genética , Ensayos Clínicos como Asunto , Femenino , Humanos , ARN Largo no Codificante/genética
7.
Biomed Pharmacother ; 98: 424-432, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29278852

RESUMEN

Adipose tissue is now described as an endocrine organ secreting a number of adipokines contributing to the development of inflammation and metabolic imbalance, but also endothelial dysfunction, vascular remodeling, atherosclerosis, and ischemic stroke. Leptin, adiponectin, and resistin are the most studied adipokines which play important roles in the regulation of cardiovascular homeostasis. Leptin and adiponectin mediate both proatherogenic and antiatherogenic responses. Leptin and adiponectin have been linked to the development of coronary heart disease and may be involved in the underlying biological mechanism of ischemic stroke. Resistin, a pro-inflammatory cytokine, is predictive of atherosclerosis and poor clinical outcomes in patients with coronary artery disease and ischemic stroke. The changes in serum levels of novel adipokines apelin, visfatin are also associated with acute ischemic stroke. These adipokines have been proposed as potential prognostic biomarkers of cardiovascular mortality/morbidity and therapeutic targets in patients with cardiometabolic diseases. In this article, we summarize the biologic role of the adipokines and discuss the link between dysfunctional adipose tissue and metabolic/inflammation imbalance, consequently endothelial damage, progression of atherosclerotic disease, and the occurrence of ischemic stroke.


Asunto(s)
Adipoquinas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Vasculares/metabolismo , Tejido Adiposo/metabolismo , Animales , Aterosclerosis/metabolismo , Humanos , Inflamación/metabolismo , Isquemia/metabolismo , Accidente Cerebrovascular/metabolismo
8.
Biomed Pharmacother ; 96: 1465-1477, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29198744

RESUMEN

Breast cancer is the most common malignancy in women worldwide. Over 90% of all breast cancer cases are of different 'sporadic' cell types, thus placing emphasis on the need for breast cancer prevention and new effective treatment strategies. In recent years, pre-clinical research provides growing evidence regarding the beneficial action of bioactive plant-derived substances - phytochemicals, on multiple cancer-related biological pathways. The important natural source of various phytochemicals with anti-oncogenic properties are plant-based functional foods. It is hypothesized that a significant anti-tumour activity of plant-based functional foods are the result of a combination of various phytochemicals rather than an isolated agent. The mixture of phytochemicals with various biological activities present in whole foods could have additive or synergistic effects against carcinogenesis. Clinically, it is very important to compare the effect of the isolated phytochemicals against the mixture of phytochemicals present in specific plant-based functional foods. Therefore, the purpose of this review article is to compare anticancer activities of isolated phytochemicals and plant-based functional foods for the prevention and therapy of breast carcinoma. Our conclusion supports the hypothesis that a mixture of wide range of phytochemicals with a plethora of biological activities present in whole plant-derived foods could have additive or synergistic effects against breast cancer. Although, the lack of parallel comparative studies between whole natural foods versus isolated plant compounds limits our conclusion, future pre-clinical and clinical studies evaluating this issue is required.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Animales , Femenino , Alimentos Funcionales , Humanos
9.
J Cell Mol Med ; 21(11): 2837-2851, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28524540

RESUMEN

It is supposed that plant functional foods, rich in phytochemicals, may potentially have preventive effects in carcinogenesis. In this study, the anticancer effects of cloves in the in vivo and in vitro mammary carcinoma model were assessed. Dried flower buds of cloves (CLOs) were used at two concentrations of 0.1% and 1% through diet during 13 weeks after the application of chemocarcinogen. After autopsy, histopathological and immunohistochemical analyses of rat mammary carcinomas were performed. Moreover, in vitro evaluation using MCF-7 cells was carried out. Dietary administered CLO caused the dose-dependent decrease in tumour frequency by 47.5% and 58.5% when compared to control. Analysis of carcinoma cells in animals showed bcl-2, Ki67, VEGFA, CD24 and CD44 expression decrease and Bax, caspase-3 and ALDH1 expression increase after high-dose CLO administration. MDA levels were substantially decreased in rat carcinomas in both CLO groups. The evaluation of histone modifications revealed increase in lysine trimethylations and acetylations (H4K20me3, H4K16ac) in carcinomas after CLO administration. TIMP3 promoter methylation levels of CpG3, CpG4, CpG5 islands were altered in treated cancer cells. An increase in total RASSF1A promoter methylation (three CpG sites) in CLO 1 group was found. In vitro studies showed antiproliferative and pro-apoptotic effects of CLO extract in MCF-7 cells (analyses of cytotoxicity, Brdu, cell cycle, annexin V/PI, caspase-7, Bcl-2 and mitochondrial membrane potential). This study showed a significant anticancer effect of clove buds in the mammary carcinoma model in vivo and in vitro.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Epigénesis Genética/efectos de los fármacos , Neoplasias Mamarias Experimentales/dietoterapia , Syzygium/química , Adenocarcinoma/dietoterapia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Familia de Aldehído Deshidrogenasa 1 , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Flores/química , Histonas/genética , Histonas/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Células MCF-7 , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA