Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37818620

RESUMEN

The membrane potential (MP) controls cell homeostasis by directing molecule transport and gene expression. How the MP is set upon epithelial differentiation is unknown. Given that tissue architecture also controls homeostasis, we investigated the relationship between basoapical polarity and resting MP in three-dimensional culture of the HMT-3522 breast cancer progression. A microelectrode technique to measure MP and input resistance reveals that the MP is raised by gap junction intercellular communication (GJIC), which directs tight-junction mediated apical polarity, and is decreased by the Na+/K+/2Cl- (NKCC, encoded by SLC12A1 and SLC12A2) co-transporter, active in multicellular structures displaying basal polarity. In the tumor counterpart, the MP is reduced. Cancer cells display diminished GJIC and do not respond to furosemide, implying loss of NKCC activity. Induced differentiation of cancer cells into basally polarized multicellular structures restores widespread GJIC and NKCC responses, but these structures display the lowest MP. The absence of apical polarity, necessary for cancer onset, in the non-neoplastic epithelium is also associated with the lowest MP under active Cl- transport. We propose that the loss of apical polarity in the breast epithelium destabilizes cellular homeostasis in part by lowering the MP.


Asunto(s)
Glándulas Mamarias Humanas , Humanos , Potenciales de la Membrana , Epitelio/metabolismo , Mama , Comunicación Celular/fisiología , Polaridad Celular/fisiología , Células Epiteliales , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
2.
J Neuropathol Exp Neurol ; 80(8): 776-788, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363662

RESUMEN

Skeletal muscle atrophy may occur with disease, injury, decreased muscle use, starvation, and normal aging. No reliably effective treatments for atrophy are available, thus research into the mechanisms contributing to muscle loss is essential. The ERG1A K+ channel contributes to muscle loss by increasing ubiquitin proteasome proteolysis (UPP) in the skeletal muscle of both unweighted and cachectic mice. Because the mechanisms which produce atrophy vary based upon the initiating factor, here we investigate atrophy produced by denervation. Using immunohistochemistry and immunoblots, we demonstrate that ERG1A protein abundance increases significantly in the Gastrocnemius muscle of rodents 7 days after both sciatic nerve transection and hind limb unweighting. Further, we reveal that ectopic expression of a Merg1a encoded plasmid in normal mouse Gastrocnemius muscle has no effect on activity of the NFκB transcription factor family, a group of proteins which contribute to muscle atrophy by modulation of the UPP. Further, although NFκB activity increases significantly after denervation, we show that expression of a plasmid encoding a dominant negative Merg1a mutant in Gastrocnemius muscle prior to denervation, has no effect on NFκB activity. Thus, although the ERG1A K+ channel increases UPP, it does not do so through modulation of NFκB transcription factors.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animales , Desnervación/efectos adversos , Canal de Potasio ERG1/genética , Suspensión Trasera/efectos adversos , Masculino , Ratones , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , FN-kappa B/metabolismo , Proteolisis , Ratas , Ratas Wistar
3.
Skelet Muscle ; 10(1): 1, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948476

RESUMEN

BACKGROUND: Skeletal muscle atrophy is the net loss of muscle mass that results from an imbalance in protein synthesis and protein degradation. It occurs in response to several stimuli including disease, injury, starvation, and normal aging. Currently, there is no truly effective pharmacological therapy for atrophy; therefore, exploration of the mechanisms contributing to atrophy is essential because it will eventually lead to discovery of an effective therapeutic target. The ether-a-go-go related gene (ERG1A) K+ channel has been shown to contribute to atrophy by upregulating ubiquitin proteasome proteolysis in cachectic and unweighted mice and has also been implicated in calcium modulation in cancer cells. METHODS: We transduced C2C12 myotubes with either a human ERG1A encoded adenovirus or an appropriate control virus. We used fura-2 calcium indicator to measure intracellular calcium concentration and Calpain-Glo assay kits (ProMega) to measure calpain activity. Quantitative PCR was used to monitor gene expression and immunoblot evaluated protein abundances in cell lysates. Data were analyzed using either a Student's t test or two-way ANOVAs and SAS software as indicated. RESULTS: Expression of human ERG1A in C2C12 myotubes increased basal intracellular calcium concentration 51.7% (p < 0.0001; n = 177). Further, it increased the combined activity of the calcium-activated cysteine proteases, calpain 1 and 2, by 31.9% (p < 0.08; n = 24); these are known to contribute to degradation of myofilaments. The increased calcium levels are likely a contributor to the increased calpain activity; however, the change in calpain activity may also be attributable to increased calpain protein abundance and/or a decrease in levels of the native calpain inhibitor, calpastatin. To explore the enhanced calpain activity further, we evaluated expression of calpain and calpastatin genes and observed no significant differences. There was no change in calpain 1 protein abundance; however, calpain 2 protein abundance decreased 40.7% (p < 0.05; n = 6). These changes do not contribute to an increase in calpain activity; however, we detected a 31.7% decrease (p < 0.05; n = 6) in calpastatin which could contribute to enhanced calpain activity. CONCLUSIONS: Human ERG1A expression increases both intracellular calcium concentration and combined calpain 1 and 2 activity. The increased calpain activity is likely a result of the increased calcium levels and decreased calpastatin abundance.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Canal de Potasio ERG1/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calpaína/genética , Línea Celular , Masculino , Ratones
5.
J Neurochem ; 93(3): 605-10, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15836619

RESUMEN

Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.


Asunto(s)
Dipéptidos/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Astacoidea , Antagonistas de Aminoácidos Excitadores/farmacología , Hidrólisis/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos
6.
J Neurochem ; 85(1): 206-13, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12641742

RESUMEN

Glutamate, previously demonstrated to participate in regulation of the resting membrane potential in skeletal muscles, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh secretion was estimated by the amplitude of endplate hyperpolarization (H-effect) following blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine and cholinesterase by armin (diethoxy-p-nitrophenyl phosphate). Glutamate was shown to inhibit non-quantal release but not spontaneous and evoked quantal secretion of ACh. Glutamate-induced decrease of the H-effect was enhanced by glycine. Glycine alone also lowered the H-effect, probably due to potentiation of the effect of endogenous glutamate present in the synaptic cleft. Inhibition of N-methyl-d-aspartate (NMDA) receptors with (+)-5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine (MK801), dl-2-amino-5-phosphopentanoic acid (AP5) and 7-chlorokynurenic acid or the elimination of Ca2+ from the bathing solution prevented the glutamate-induced decrease of the H-effect with or without glycine. Inhibition of muscle nitric oxide synthase by NG-nitro-l-arginine methyl ester (l-NAME), soluble guanylyl cyclase by 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and binding and inactivation of extracellular nitric oxide (NO) by haemoglobin removed the action of glutamate and glycine on the H-effect. The results suggest that glutamate, acting on post-synaptic NMDA receptors to induce sarcoplasmic synthesis and release of NO, selectively inhibits non-quantal secretion of ACh from motor nerve terminals. Non-quantal ACh is known to modulate the resting membrane potential of muscle membrane via control of activity of chloride transport and a decrease in secretion of non-quantal transmitter following muscle denervation triggers the early post-denervation depolarization of muscle fibres.


Asunto(s)
Acetilcolina/metabolismo , Ácido Glutámico/metabolismo , Unión Neuromuscular/metabolismo , Animales , Calcio/metabolismo , Inhibidores de la Colinesterasa/farmacología , Electrofisiología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Unión Neuromuscular/efectos de los fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Glia ; 38(1): 80-6, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11921205

RESUMEN

Electrical stimulation of crayfish giant axons at high frequency activates group II metabotropic and NMDA glutamate receptors on adjacent glial cells via release of N-acetylaspartylglutamate and glutamate formed upon its hydrolysis. This produces a transient depolarization followed by a prolonged hyperpolarization of glial cells that involves nicotinic acetylcholine receptor activation. The hyperpolarization is nearly completely blocked by antagonists of metabotropic glutamate receptors but only slightly reduced by inhibition of NMDA receptors. We report that the NMDA-induced hyperpolarization of glial cells is reduced by decreased calcium in the solution bathing the giant nerve fiber, while removal of sodium ions or block of voltage-dependent calcium channels completely prevents the glial response to NMDA. Inhibition of nicotinic acetylcholine receptors or removal of extracellular Cl(-) converts the glial response from a hyperpolarization to a depolarization that is sensitive to NMDA receptor antagonist. We propose that NMDA receptor activation by glutamate, formed from extracellular N-acetylaspartylglutamate during nerve stimulation, contributes to glial hyperpolarization by increasing intracellular Ca(2+) via opening of voltage-sensitive Ca(2+) channels. Based on our previous work, we propose further that the added Ca(2+) supplements that produced by N-acetylaspartylglutamate and glutamate acting on group II metabotropic glutamate receptors to cause an increased release of acetylcholine and a larger hyperpolarization.


Asunto(s)
Astacoidea/metabolismo , Axones/metabolismo , Comunicación Celular/fisiología , Membrana Celular/metabolismo , Sistema Nervioso/metabolismo , Neuroglía/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Acetilcolina/metabolismo , Animales , Astacoidea/citología , Axones/efectos de los fármacos , Axones/ultraestructura , Calcio/metabolismo , Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Dipéptidos/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Sistema Nervioso/citología , Sistema Nervioso/efectos de los fármacos , Conducción Nerviosa/fisiología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Sodio/metabolismo , Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...