Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Rev Camb Philos Soc ; 98(4): 1118-1141, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36879466

RESUMEN

Although the importance of natural habitats to pollinator diversity is widely recognized, the value of forests to pollinating insects has been largely overlooked in many parts of the world. In this review, we (i) establish the importance of forests to global pollinator diversity, (ii) explore the relationship between forest cover and pollinator diversity in mixed-use landscapes, and (iii) highlight the contributions of forest-associated pollinators to pollination in adjacent crops. The literature shows unambiguously that native forests support a large number of forest-dependent species and are thus critically important to global pollinator diversity. Many pollinator taxa require or benefit greatly from resources that are restricted to forests, such as floral resources provided by forest plants (including wind-pollinated trees), dead wood for nesting, tree resins, and various non-floral sugar sources (e.g. honeydew). Although landscape-scale studies generally support the conclusion that forests enhance pollinator diversity, findings are often complicated by spatial scale, focal taxa, landscape context, temporal context, forest type, disturbance history, and external stressors. While some forest loss can be beneficial to pollinators by enhancing habitat complementarity, too much can result in the near-elimination of forest-associated species. There is strong evidence from studies of multiple crop types that forest cover can substantially increase yields in adjacent habitats, at least within the foraging ranges of the pollinators involved. The literature also suggests that forests may have enhanced importance to pollinators in the future given their role in mitigating the negative effects of pesticides and climate change. Many questions remain about the amount and configuration of forest cover required to promote the diversity of forest-associated pollinators and their services within forests and in neighbouring habitats. However, it is clear from the current body of knowledge that any effort to preserve native woody habitats, including the protection of individual trees, will benefit pollinating insects and help maintain the critical services they provide.


Asunto(s)
Bosques , Polinización , Animales , Abejas , Ecosistema , Productos Agrícolas , Insectos , Árboles
2.
Science ; 363(6424): 282-284, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30655441

RESUMEN

Land-use change threatens global biodiversity and may reshape the tree of life by favoring some lineages over others. Whether phylogenetic diversity loss compromises ecosystem service delivery remains unknown. We address this knowledge gap using extensive genomic, community, and crop datasets to examine relationships among land use, pollinator phylogenetic structure, and crop production. Pollinator communities in highly agricultural landscapes contain 230 million fewer years of evolutionary history; this loss was strongly associated with reduced crop yield and quality. Our study links landscape-mediated changes in the phylogenetic structure of natural communities to the disruption of ecosystem services. Measuring conservation success by species counts alone may fail to protect ecosystem functions and the full diversity of life from which they are derived.


Asunto(s)
Abejas/clasificación , Producción de Cultivos , Filogenia , Polinización , Agricultura , Animales , Biodiversidad , Malus , New York
3.
Biol Lett ; 13(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29187605

RESUMEN

Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities.


Asunto(s)
Distribución Animal , Abejas , Flores , Polinización , Adaptación Biológica , Animales , Ecosistema , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...