Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; : 1-10, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-39076152

RESUMEN

OBJECTIVE: Traumatic brain injury (TBI) and hemorrhage are responsible for the largest proportion of all trauma-related deaths. In polytrauma patients at risk of hemorrhage and TBI, the diagnosis, prognosis, and management of TBI remain poorly characterized. The authors sought to characterize the predictive capabilities of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) measurements in patients with hemorrhagic shock with and without concomitant TBI. METHODS: The authors performed a secondary analysis on serial blood samples derived from a prospective observational cohort study that focused on comparing early whole-blood and component resuscitation. A convenience sample of patients was used in which samples were collected at three time points and the presence of TBI or no TBI via CT imaging was documented. GFAP and UCH-L1 measurements were performed on plasma samples using the i-STAT Alinity point-of-care platform. Using classification tree recursive partitioning, the authors determined the measurement cut points for each biomarker to maximize the abilities for predicting the diagnosis of TBI, Rotterdam CT imaging scores, and 6-month Glasgow Outcome Scale-Extended (GOSE) scores. RESULTS: Biomarker comparisons demonstrated that GFAP and UCH-L1 measurements were associated with the presence of TBI at all time points. Classification tree analyses demonstrated that a GFAP level > 286 pg/ml for the sample taken upon the patient's arrival had an area under the receiver operating characteristic curve of 0.77 for predicting the presence of TBI. The classification tree results demonstrated that a cut point of 3094 pg/ml for the arrival GFAP measurement was the most predictive for an elevated Rotterdam score on the initial and second CT scans and for TBI progression between scans. No significant associations between any of the most predictive cut points for UCH-L1 and Rotterdam CT scores or TBI progression were found. The predictive capabilities of UCH-L1 were limited by the range allowed by the point-of-care platform. Arrival GFAP cut points remained strong independent predictors after controlling for all potential polytrauma confounders, including injury characteristics, shock severity, and resuscitation. CONCLUSIONS: Early measurements of GFAP and UCH-L1 on a point-of-care device are significantly associated with CT-diagnosed TBI in patients with polytrauma and shock. Early elevated GFAP measurements are associated with worse head CT scan Rotterdam scores, TBI progression, and worse GOSE scores, and these associations are independent of other injury attributes, shock severity, and early resuscitation characteristics.

2.
J Virol ; 97(1): e0144222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36541803

RESUMEN

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Asunto(s)
Encefalitis Viral , Neuronas , Infecciones por Reoviridae , Reoviridae , Animales , Ratones , Apoptosis/genética , Apoptosis/inmunología , Quimiocinas/inmunología , Encefalitis Viral/inmunología , Encefalitis Viral/virología , Neuronas/inmunología , FN-kappa B/genética , FN-kappa B/metabolismo , Reoviridae/inmunología , Reoviridae/patogenicidad , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
3.
Crit Care Explor ; 5(11): e0974, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38304708

RESUMEN

BACKGROUND: Sepsis is a common and deadly syndrome, accounting for more than 11 million deaths annually. To mature a deeper understanding of the host and pathogen mechanisms contributing to poor outcomes in sepsis, and thereby possibly inform new therapeutic targets, sophisticated, and expensive biorepositories are typically required. We propose that remnant biospecimens are an alternative for mechanistic sepsis research, although the viability and scientific value of such remnants are unknown. METHODS AND RESULTS: The Remnant Biospecimen Investigation in Sepsis study is a prospective cohort study of 225 adults (age ≥ 18 yr) presenting to the emergency department with community sepsis, defined as sepsis-3 criteria within 6 hours of arrival. The primary objective was to determine the scientific value of a remnant biospecimen repository in sepsis linked to clinical phenotyping in the electronic health record. We will study candidate multiomic readouts of sepsis biology, governed by a conceptual model, and determine the precision, accuracy, integrity, and comparability of proteins, small molecules, lipids, and pathogen sequencing in remnant biospecimens compared with paired biospecimens obtained according to research protocols. Paired biospecimens will include plasma from sodium-heparin, EDTA, sodium fluoride, and citrate tubes. CONCLUSIONS: The study has received approval from the University of Pittsburgh Human Research Protection Office (Study 21120013). Recruitment began on October 25, 2022, with planned release of primary results anticipated in 2024. Results will be made available to the public, the funders, critical care societies, laboratory medicine scientists, and other researchers.

4.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993365

RESUMEN

Celiac disease is an immune-mediated intestinal disorder that results from loss of oral tolerance (LOT) to dietary gluten. Reovirus elicits inflammatory Th1 cells and suppresses Treg responses to dietary antigen in a strain-dependent manner. Strain type 1 Lang (T1L) breaks oral tolerance, while strain type 3 Dearing reassortant virus (T3D-RV) does not. We discovered that intestinal infection by T1L in mice leads to the recruitment and activation of NK cells in mesenteric lymph nodes (MLNs) in a type I IFN-dependent manner. Once activated following infection, NK cells produce type II IFN and contribute to IFN-stimulated gene expression in the MLNs, which in turn induces inflammatory DC and T cell responses. Immune depletion of NK cells impairs T1L-induced LOT to newly introduced food antigen. These studies indicate that NK cells modulate the response to dietary antigen in the presence of a viral infection.


Asunto(s)
Tolerancia Inmunológica , Células Asesinas Naturales , Animales , Anticuerpos Antivirales , Ratones
5.
J Virol ; 96(8): e0005522, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35353001

RESUMEN

Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.


Asunto(s)
Receptor Nogo 1 , Reoviridae , Animales , Molécula A de Adhesión de Unión/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Reoviridae/metabolismo , Infecciones por Reoviridae/virología
6.
Cell Host Microbe ; 29(6): 1014-1029.e8, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33894129

RESUMEN

The contributions of the viral component of the microbiome-the virome-to the development of innate and adaptive immunity are largely unknown. Here, we systematically defined the host response in mice to a panel of eukaryotic enteric viruses representing six different families. Infections with most of these viruses were asymptomatic in the mice, the magnitude and duration of which was dependent on the microbiota. Flow cytometric and transcriptional profiling of mice mono-associated with these viruses unveiled general adaptations by the host, such as lymphocyte differentiation and IL-22 signatures in the intestine, as well as numerous viral-strain-specific responses that persisted. Comparison with a dataset derived from analogous bacterial mono-association in mice identified bacterial species that evoke an immune response comparable with the viruses we examined. These results expand an understanding of the immune space occupied by the enteric virome and underscore the importance of viral exposure events.


Asunto(s)
Citocinas/metabolismo , Infecciones por Enterovirus/inmunología , Microbioma Gastrointestinal , Inmunidad , Transcriptoma , Viroma , Virus/inmunología , Animales , Infecciones Asintomáticas , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Intestinos/inmunología , Intestinos/virología , Ratones , Ratones Endogámicos C57BL , Simbiosis , Linfocitos T/metabolismo
7.
ASN Neuro ; 12: 1759091420971916, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33228381

RESUMEN

The ERK1/2 signaling pathway promotes myelin wrapping during development and remyelination, and sustained ERK1/2 activation in the oligodendrocyte (OL) lineage results in hypermyelination of the CNS. We therefore hypothesized that increased ERK1/2 signaling in the OL lineage would 1) protect against immune-mediated demyelination due to increased baseline myelin thickness and/or 2) promote enhanced remyelination and thus functional recovery after experimental autoimmune encephalomyelitis (EAE) induction. Cnp-Cre;Mek1DD-eGFP/+ mice that express a constitutively active form of MEK1 (the upstream activator of ERK1/2) in the OL lineage, exhibited a significant decrease in EAE clinical severity compared to controls. However, experiments using tamoxifen-inducible Plp-CreERT;Mek1DD-eGFP/+ or Pdgfrα-CreERT;Mek1DD-eGFP mice revealed this was not solely due to a protective or reparative effect resulting from MEK1DD expression specifically in the OL lineage. Because EAE is an immune-mediated disease, we examined Cnp-Cre;Mek1DD-eGFP/+ splenic immune cells for recombination. Surprisingly, GFP+ recombined CD19+ B-cells, CD11b+ monocytes, and CD3+ T-cells were noted when Cre expression was driven by the Cnp promoter. While ERK1/2 signaling in monocytes and T-cells is associated with proinflammatory activation, fewer studies have examined ERK1/2 signaling in B-cell populations. After in vitro stimulation, MEK1DD-expressing B-cells exhibited a 3-fold increase in CD138+ plasmablasts and a 5-fold increase in CD5+CD1dhi B-cells compared to controls. Stimulated MEK1DD-expressing B-cells also exhibited an upregulation of IL-10, known to suppress the initiation of EAE when produced by CD5+CD1dhi regulatory B-cells. Taken together, our data support the conclusion that sustained ERK1/2 activation in B-cells suppresses immune-mediated demyelination via increasing activation of regulatory B10 cells.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/biosíntesis , Linfocitos B/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Sistema de Señalización de MAP Quinasas/fisiología , Regiones Promotoras Genéticas/fisiología , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/inmunología , Animales , Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087464

RESUMEN

Engagement of cell surface receptors by viruses is a critical determinant of viral tropism and disease. The reovirus attachment protein σ1 binds sialylated glycans and proteinaceous receptors to mediate infection, but the specific requirements for different cell types are not entirely known. To identify host factors required for reovirus-induced cell death, we conducted a CRISPR-knockout screen targeting over 20,000 genes in murine microglial BV2 cells. Candidate genes required for reovirus to cause cell death were highly enriched for sialic acid synthesis and transport. Two of the top candidates identified, CMP N-acetylneuraminic acid synthetase (Cmas) and solute carrier family 35 member A1 (Slc35a1), promote sialic acid expression on the cell surface. Two reovirus strains that differ in the capacity to bind sialic acid, T3SA+ and T3SA-, were used to evaluate Cmas and Slc35a1 as potential host genes required for reovirus infection. Following CRISPR-Cas9 disruption of either gene, cell surface expression of sialic acid was diminished. These results correlated with decreased binding of strain T3SA+, which is capable of engaging sialic acid. Disruption of either gene did not alter the low-level binding of T3SA-, which does not engage sialic acid. Furthermore, infectivity of T3SA+ was diminished to levels similar to those of T3SA- in cells lacking Cmas and Slc35a1 by CRISPR ablation. However, exogenous expression of Cmas and Slc35a1 into the respective null cells restored sialic acid expression and T3SA+ binding and infectivity. These results demonstrate that Cmas and Slc35a1, which mediate cell surface expression of sialic acid, are required in murine microglial cells for efficient reovirus binding and infection.IMPORTANCE Attachment factors and receptors are important determinants of dissemination and tropism during reovirus-induced disease. In a CRISPR cell survival screen, we discovered two genes, Cmas and Slc35a1, which encode proteins required for sialic acid expression on the cell surface and mediate reovirus infection of microglial cells. This work elucidates host genes that render microglial cells susceptible to reovirus infection and expands current understanding of the receptors on microglial cells that are engaged by reovirus. Such knowledge may lead to new strategies to selectively target microglial cells for oncolytic applications.


Asunto(s)
N-Acilneuraminato Citidililtransferasa/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Infecciones por Reoviridae/virología , Reoviridae/fisiología , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Membrana Celular/metabolismo , Supervivencia Celular , Ratones , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferasa/genética , Proteínas de Transporte de Nucleótidos/genética , Receptores Virales/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Infecciones por Reoviridae/metabolismo , Acoplamiento Viral , Replicación Viral
9.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462571

RESUMEN

Type III interferon (IFN), or IFN lambda (IFN-λ), is an essential component of the innate immune response to mucosal viral infections. In both the intestine and the lung, signaling via the IFN-λ receptor (IFNLR) controls clinically important viral pathogens, including influenza virus, norovirus, and rotavirus. While it is thought that IFN-λ cytokines are the exclusive ligands for signaling through IFNLR, it is not known whether genetic ablation of these cytokines phenotypically recapitulates disruption of the receptor. Here, we report the serendipitous establishment of Ifnl2-/- Ifnl3-/- mice, which lack all known functional murine IFN-λ cytokines. We demonstrate that, like Ifnlr1-/- mice lacking IFNLR signaling, these mice display defective control of murine norovirus, reovirus, and influenza virus and therefore genocopy Ifnlr1-/- mice. Thus, for regulation of viral infections at mucosal sites of both the intestine and lung, signaling via IFNLR can be fully explained by the activity of known cytokines IFN-λ2 and IFN-λ3. Our results confirm the current understanding of ligand-receptor interactions for type III IFN signaling and highlight the importance of this pathway in regulation of mucosal viral pathogens.IMPORTANCE Type III interferons are potent antiviral cytokines important for regulation of viruses that infect at mucosal surfaces. Studies using mice lacking the Ifnlr1 gene encoding the type III interferon receptor have demonstrated that signaling through this receptor is critical for protection against influenza virus, norovirus, and reovirus. Using a genetic approach to disrupt murine type III interferon cytokine genes Ifnl2 and Ifnl3, we found that mice lacking these cytokines fully recapitulate the impaired control of viruses observed in mice lacking Ifnlr1 Our results support the idea of an exclusive role for known type III interferon cytokines in signaling via IFNLR to mediate antiviral effects at mucosal surfaces. These findings emphasize the importance of type III interferons in regulation of a variety of viral pathogens and provide important genetic evidence to support our understanding of the ligand-receptor interactions in this pathway.


Asunto(s)
Citocinas/genética , Interferones/genética , Interleucinas/genética , Animales , Línea Celular , Citocinas/metabolismo , Femenino , Inmunidad Innata , Interferones/metabolismo , Interleucinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membrana Mucosa/metabolismo , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Virosis/metabolismo , Interferón lambda
10.
Cell Host Microbe ; 24(5): 677-688.e5, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30392830

RESUMEN

Intestinal reovirus infection can trigger T helper 1 (TH1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces TH1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant. Transcriptional profiling of mesenteric lymph nodes following infection reveals an immunopathological signature that does not segregate with protective immunity but with loss of oral tolerance, in which interferon regulatory factor 1 is critical. These data show that viral capacity to trigger specific inflammatory pathways at sites where T cell responses to dietary antigens take place interferes with the development of tolerance to an oral antigen. Collectively, these data provide a foundation for the development of therapeutic strategies to prevent TH1-mediated complex immune disorders triggered by viral infections.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Dieta , Norovirus/inmunología , Norovirus/patogenicidad , Ovalbúmina/inmunología , Células TH1/inmunología , Administración Oral , Animales , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/inmunología , Enfermedad Celíaca/inmunología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Inmunidad , Inflamación , Factor 1 Regulador del Interferón/inmunología , Ganglios Linfáticos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/administración & dosificación , Esparcimiento de Virus
11.
J Virol ; 92(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29514905

RESUMEN

Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


Asunto(s)
Apoptosis/inmunología , Células Epiteliales/inmunología , Mucosa Intestinal/inmunología , Orthoreovirus Mamífero 3/inmunología , Orthoreovirus de los Mamíferos/inmunología , Infecciones por Reoviridae/inmunología , Animales , Antígenos Virales/inmunología , Línea Celular , Cricetinae , Células Epiteliales/patología , Células Epiteliales/virología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Ratones , Infecciones por Reoviridae/patología
12.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077655

RESUMEN

Lambda interferon (IFN-λ) has potent antiviral effects against multiple enteric viral pathogens, including norovirus and rotavirus, in both preventing and curing infection. Because the intestine includes a diverse array of cell types, however, the cell(s) upon which IFN-λ acts to exert its antiviral effects is unclear. Here, we sought to identify IFN-λ-responsive cells by generation of mice with lineage-specific deletion of the receptor for IFN-λ, Ifnlr1 We found that expression of IFNLR1 on intestinal epithelial cells (IECs) in the small intestine and colon is required for enteric IFN-λ antiviral activity. IEC Ifnlr1 expression also determines the efficacy of IFN-λ in resolving persistent murine norovirus (MNoV) infection and regulates fecal shedding and viral titers in tissue. Thus, the expression of Ifnlr1 by IECs is necessary for the response to both endogenous and exogenous IFN-λ. We further demonstrate that IEC Ifnlr1 expression is required for the sterilizing innate immune effects of IFN-λ by extending these findings in Rag1-deficient mice. Finally, we assessed whether our findings pertained to multiple viral pathogens by infecting mice specifically lacking IEC Ifnlr1 expression with reovirus. These mice phenocopied Ifnlr1-null animals, exhibiting increased intestinal tissue titers and enhanced reovirus fecal shedding. Thus, IECs are the critical cell type responding to IFN-λ to control multiple enteric viruses. This is the first genetic evidence that supports an essential role for IECs in IFN-λ-mediated control of enteric viral infection, and these findings provide insight into the mechanism of IFN-λ-mediated antiviral activity.IMPORTANCE Human noroviruses (HNoVs) are the leading cause of epidemic gastroenteritis worldwide. Type III interferons (IFN-λ) control enteric viral infections in the gut and have been shown to cure mouse norovirus, a small-animal model for HNoVs. Using a genetic approach with conditional knockout mice, we identified IECs as the dominant IFN-λ-responsive cells in control of enteric virus infection in vivo Upon murine norovirus or reovirus infection, Ifnlr1 depletion in IECs largely recapitulated the phenotype seen in Ifnlr1-/- mice of higher intestinal tissue viral titers and increased viral shedding in the stool. Moreover, IFN-λ-mediated sterilizing immunity against murine norovirus requires the capacity of IECs to respond to IFN-λ. These findings clarify the mechanism of action of this cytokine and emphasize the therapeutic potential of IFN-λ for treating mucosal viral infections.


Asunto(s)
Células Epiteliales/metabolismo , Norovirus/fisiología , Orthoreovirus de los Mamíferos/fisiología , Receptores de Interferón/metabolismo , Animales , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/metabolismo , Infecciones por Caliciviridae/virología , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/virología , Inmunidad Innata , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestino Grueso/inmunología , Intestino Grueso/metabolismo , Intestino Grueso/virología , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Intestino Delgado/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/virología , Esparcimiento de Virus
13.
J Neurosci ; 36(35): 9186-200, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581459

RESUMEN

UNLABELLED: Growing evidence shows that mechanisms controlling CNS plasticity extend beyond the synapse and that alterations in myelin can modify conduction velocity, leading to changes in neural circuitry. Although it is widely accepted that newly generated oligodendrocytes (OLs) produce myelin in the adult CNS, the contribution of preexisting OLs to functional myelin remodeling is not known. Here, we show that sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in preexisting OLs of adult mice is sufficient to drive increased myelin thickness, faster conduction speeds, and enhanced hippocampal-dependent emotional learning. Although preexisting OLs do not normally contribute to remyelination, we show that sustained activation of ERK1/2 renders them able to do so. These data suggest that strategies designed to push mature OLs to reinitiate myelination may be beneficial both for enhancing remyelination in demyelinating diseases and for increasing neural plasticity in the adult CNS. SIGNIFICANCE STATEMENT: Myelin is a crucial regulator of CNS plasticity, function, and repair. Although it is generally accepted that new myelin production in the adult CNS is initiated by newly generated oligodendrocytes (OLs), great interest remains in additionally driving mature preexisting OLs to make myelin. The ability to induce myelination by the larger population of preexisting OLs carries the potential for enhanced remyelination in demyelinating diseases and increased neural plasticity in the adult CNS. Here, we show that sustained activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway is sufficient to drive mature OLs in the adult mouse CNS to reinitiate myelination, leading to new myelin wraps and functional changes.


Asunto(s)
Sistema Nervioso Central/fisiología , Enfermedades Desmielinizantes/patología , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Análisis de Varianza , Animales , Condicionamiento Psicológico/fisiología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/fisiopatología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Conducta Exploratoria/fisiología , Miedo/fisiología , Galactosilceramidas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisofosfolipasa/toxicidad , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteína Quinasa 3 Activada por Mitógenos/genética , Fuerza Muscular/genética , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/ultraestructura , Desempeño Psicomotor/fisiología , ARN Mensajero/metabolismo , Reconocimiento en Psicología/fisiología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA