Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Surf ; 9: 100100, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37396714
3.
Microbiol Resour Announc ; 12(4): e0130622, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36877038

RESUMEN

Leishmania (Mundinia) procaviensis is a parasitic kinetoplastid that was first isolated from a rock hyrax in Namibia in 1975. We present the complete genome sequence of Leishmania (Mundinia) procaviensis isolate 253, strain LV425, sequenced using combined short- and long-read technologies. This genome will contribute to our understanding of hyraxes as a Leishmania reservoir.

4.
Methods Mol Biol ; 2579: 137-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36045204

RESUMEN

Centrifugal counter-flow elutriation is a non-invasive technique that separates cells based on their hydrodynamic volume in a specialized centrifugation chamber that allows the application of a counter-flow of buffer to oppose sedimentation. Here, we report a centrifugal counter-flow elutriation protocol for Trypanosoma brucei cells that is able to rapidly isolate highly enriched G1 subpopulations (>95%) of synchronized cells. The cells obtained are viable and proliferate without lag, allowing subsequent cell cycle phases to be obtained by continued culture. The synchronized cell cultures obtained by this process have uniform DNA content, a narrow size distribution, undergo synchronous division, and maintain synchrony into subsequent cell cycles.


Asunto(s)
Trypanosoma brucei brucei , Técnicas de Cultivo de Célula , Ciclo Celular/genética , División Celular , Separación Celular/métodos , Centrifugación/métodos
5.
Microbiol Resour Announc ; 10(41): e0065121, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34647802

RESUMEN

Porcisia hertigi is a parasitic kinetoplastid first isolated from porcupines (Coendou rothschildi) in central Panama in 1965. We present the complete genome sequence of P. hertigi, isolate C119, strain LV43, sequenced using combined short- and long-read technologies. This complete genome sequence will contribute to our knowledge of the parasitic genus Porcisia.

6.
Sci Data ; 8(1): 234, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489462

RESUMEN

We provide the raw and processed data produced during the genome sequencing of isolates from six species of parasites from the sub-family Leishmaniinae: Leishmania martiniquensis (Thailand), Leishmania orientalis (Thailand), Leishmania enriettii (Brazil), Leishmania sp. Ghana, Leishmania sp. Namibia and Porcisia hertigi (Panama). De novo assembly was performed using Nanopore long reads to construct chromosome backbone scaffolds. We then corrected erroneous base calling by mapping short Illumina paired-end reads onto the initial assembly. Data has been deposited at NCBI as follows: raw sequencing output in the Sequence Read Archive, finished genomes in GenBank, and ancillary data in BioSample and BioProject. Derived data such as quality scoring, SAM files, genome annotations and repeat sequence lists have been deposited in Lancaster University's electronic data archive with DOIs provided for each item. Our coding workflow has been deposited in GitHub and Zenodo repositories. This data constitutes a resource for the comparative genomics of parasites and for further applications in general and clinical parasitology.


Asunto(s)
Genoma de Protozoos , Leishmania/clasificación , Filogenia , Genómica , Anotación de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos
7.
Microbiol Resour Announc ; 10(39): e0059121, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34591664

RESUMEN

Leishmania (Mundinia) sp. Ghana is a kinetoplastid parasite isolated in 2015 in Ghana. We report the complete genome sequence of L. (M.) sp. Ghana, sequenced using combined short-read and long-read technologies. This will facilitate greater understanding of this novel pathogen and its relationships within the subgenus Mundinia.

8.
Microbiol Resour Announc ; 10(36): e0057521, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498918

RESUMEN

Leishmania (Mundinia) enriettii is a parasitic kinetoplastid first isolated from a guinea pig in Brazil in 1946. We present the complete genome sequence of L. (M.) enriettii, isolate CUR178, strain LV763, sequenced using combined short-read and long-read technologies. This will facilitate a greater understanding of the genome diversity within L. (M.) enriettii.

9.
Microbiol Resour Announc ; 10(36): e0057421, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498920

RESUMEN

Leishmania (Mundinia) orientalis is a kinetoplastid parasite first isolated in 2014 in Thailand. We report the complete genome sequence of L. (M.) orientalis, sequenced using combined short-read and long-read technologies. This will facilitate greater understanding of this novel pathogen and its relationship to other members of the subgenus Mundinia.

10.
mSphere ; 6(5): e0036621, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34468164

RESUMEN

Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Ribosomas/metabolismo , Trypanosoma cruzi/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteínas Protozoarias/análisis , ARN Protozoario/análisis , Transcriptoma , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
11.
Microbiol Resour Announc ; 10(29): e0043921, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292068

RESUMEN

We present the LGAAP computational pipeline, which was successfully used to assemble six genomes of the parasite subfamily Leishmaniinae to chromosome-scale completeness from a combination of long- and short-read sequencing data. LGAAP is open source, and we suggest that it may easily be ported for assembly of any genome of comparable size (∼35 Mb).

12.
Microbiol Resour Announc ; 10(24): e0005821, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137631

RESUMEN

Leishmania (Mundinia) martiniquensis is a kinetoplastid parasite that was first isolated in 1995 on Martinique. We report the first complete genome for Leishmania martiniquensis from Asia, isolate LSCM1, strain LV760, which was sequenced using combined short-read and long-read technologies. This will facilitate greater understanding of the evolution of the geographically dispersed subgenus Mundinia.

13.
Front Mol Biosci ; 7: 606807, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282915

RESUMEN

Cellular homeostasis requires adaption to environmental stress. In response to various environmental and genotoxic stresses, all cells produce dinucleoside polyphosphates (NpnNs), the best studied of which is diadenosine tetraphosphate (Ap4A). Despite intensive investigation, the precise biological roles of these molecules have remained elusive. However, recent studies have elucidated distinct and specific signaling mechanisms for these nucleotides in prokaryotes and eukaryotes. This review summarizes these key discoveries and describes the mechanisms of Ap4A and Ap4N synthesis, the mediators of the cellular responses to increased intracellular levels of these molecules and the hydrolytic mechanisms required to maintain low levels in the absence of stress. The intracellular responses to dinucleotide accumulation are evaluated in the context of the "friend" and "foe" scenarios. The "friend (or alarmone) hypothesis" suggests that ApnN act as bona fide secondary messengers mediating responses to stress. In contrast, the "foe" hypothesis proposes that ApnN and other NpnN are produced by non-canonical enzymatic synthesis as a result of physiological and environmental stress in critically damaged cells but do not actively regulate mitigating signaling pathways. In addition, we will discuss potential target proteins, and critically assess new evidence supporting roles for ApnN in the regulation of gene expression, immune responses, DNA replication and DNA repair. The recent advances in the field have generated great interest as they have for the first time revealed some of the molecular mechanisms that mediate cellular responses to ApnN. Finally, areas for future research are discussed with possible but unproven roles for intracellular ApnN to encourage further research into the signaling networks that are regulated by these nucleotides.

14.
J Proteomics ; 219: 103735, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32198071

RESUMEN

The symptoms of African sleeping sickness, caused by the parasite Trypanosoma brucei, can include periods of fever as high as 41 °C which triggers a heat shock response in the parasite. To capture events involved in sensing and responding to heat shock in the mammalian infective form we have conducted a SILAC-based quantitative proteomic and phosphoproteomic analysis of T. brucei cells treated at 41 °C for 1h. Our analysis identified 193 heat shock responsive phosphorylation sites with an average of 5-fold change in abundance, but only 20 heat shock responsive proteins with average of 1.5-fold change. These data indicate that protein abundance does not rapidly respond (≤1 h) to heat shock, and that the changes observed in phosphorylation site abundance are larger and more widespread. The heat shock responsive phosphorylation sites showed enrichment of RNA binding proteins with putative roles in heat shock response included P-body / stress granules and the eukaryotic translation initiation 4F complex. The ZC3H11-MKT1 complex, which stabilises mRNAs of thermotolerance proteins, appears to represent a key signal integration node in the heat shock response. SIGNIFICANCE: We report the first quantitative study of changes in protein and phosphorylation site abundance in response to heat shock in the clinically relevant form of the human parasite Trypanosoma brucei. The identification of heat shock responsive phosphorylation sites on proteins with putative roles in thermotolerance including the ZC3H11-MKT1 complex provides evidence of the role dynamic phosphorylation of RNA binding proteins in co-ordinating heat shock. Temperature changes in the host are a major physiological challenge to parasites and factors conferring tolerance to heat shock constitute overlooked virulence factors. A better understanding of these virulence factors will pave the way for the development of novel drug therapies which selectively target T. brucei.


Asunto(s)
Termotolerancia , Trypanosoma brucei brucei , Animales , Respuesta al Choque Térmico , Humanos , Proteómica , Proteínas Protozoarias
15.
Methods Mol Biol ; 2116: 125-137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32221919

RESUMEN

Mass spectrometry based proteomics allows for the identification and quantification of protein and phosphorylation site abundance on a proteome wide scale. Here we describe the metabolic labeling of cultured Trypanosoma brucei cells in either the bloodstream or procyclic life cycle stage using stable isotope labeling of amino acids in cell culture (SILAC), and the production of samples suitable for analysis by liquid chromatography tandem mass spectrometry. The protocols require little specialist equipment, and they typically enable quantification of over 4500 proteins and 9000 phosphorylation sites.


Asunto(s)
Marcaje Isotópico/métodos , Fosfoproteínas/análisis , Proteómica/métodos , Proteínas Protozoarias/análisis , Trypanosoma brucei brucei/fisiología , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Cromatografía de Afinidad/métodos , Insectos/parasitología , Estadios del Ciclo de Vida/fisiología , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Espectrometría de Masas en Tándem/métodos , Trypanosoma brucei brucei/aislamiento & purificación
16.
RSC Chem Biol ; 1(1): 13-25, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34458745

RESUMEN

UDP-N-acetylglucosamine pyrophosphorylase (UAP1) catalyses the last step in eukaryotic biosynthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), converting UTP and GlcNAc-1P to the sugar nucleotide. Gene disruption studies have shown that this gene is essential in eukaryotes and a possible antifungal target, yet no inhibitors of fungal UAP1 have so far been reported. Here we describe the crystal structures of substrate/product complexes of UAP1 from Aspergillus fumigatus that together provide snapshots of catalysis. A structure with UDP-GlcNAc, pyrophosphate and Mg2+ provides the first Michaelis complex trapped for this class of enzyme, revealing the structural basis of the previously reported Mg2+ dependence and direct observation of pyrophosphorolysis. We also show that a highly conserved lysine mimics the role of a second metal observed in structures of bacterial orthologues. A mechanism-inspired UTP α,ß-methylenebisphosphonate analogue (meUTP) was designed and synthesized and was shown to be a micromolar inhibitor of the enzyme. The mechanistic insights and inhibitor described here will facilitate future studies towards the discovery of small molecule inhibitors of this currently unexploited potential antifungal drug target.

17.
PLoS Pathog ; 15(12): e1008129, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830130

RESUMEN

The cell division cycle of the unicellular eukaryote Trypanosome brucei is tightly regulated despite the paucity of transcriptional control that results from the arrangement of genes in polycistronic units and lack of dynamically regulated transcription factors. To identify the contribution of dynamic phosphorylation to T. brucei cell cycle control we have combined cell cycle synchronisation by centrifugal elutriation with quantitative phosphoproteomic analysis. Cell cycle regulated changes in phosphorylation site abundance (917 sites, average 5-fold change) were more widespread and of a larger magnitude than changes in protein abundance (443 proteins, average 2-fold change) and were mostly independent of each other. Hierarchical clustering of co-regulated phosphorylation sites according to their cell cycle profile revealed that a bulk increase in phosphorylation occurs across the cell cycle, with a significant enrichment of known cell cycle regulators and RNA binding proteins (RBPs) within the largest clusters. Cell cycle regulated changes in essential cell cycle kinases are temporally co-ordinated with differential phosphorylation of components of the kinetochore and eukaryotic initiation factors, along with many RBPs not previously linked to the cell cycle such as eight PSP1-C terminal domain containing proteins. The temporal profiles demonstrate the importance of dynamic phosphorylation in co-ordinating progression through the cell cycle, and provide evidence that RBPs play a central role in post-transcriptional regulation of the T. brucei cell cycle. Data are available via ProteomeXchange with identifier PXD013488.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/fisiología , Fosforilación
18.
Nature ; 560(7717): 192-197, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046105

RESUMEN

Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Leishmania donovani/efectos de los fármacos , Leishmania donovani/enzimología , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Terapia Molecular Dirigida , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Quinasa 9 Dependiente de la Ciclina/química , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Simulación del Acoplamiento Molecular , Proteoma/efectos de los fármacos , Proteómica , Pirazoles/química , Pirazoles/uso terapéutico , Pirimidinas/química , Pirimidinas/uso terapéutico , Reproducibilidad de los Resultados , Especificidad por Sustrato
19.
PLoS One ; 13(12): e0206332, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596656

RESUMEN

The bloodstream form of the parasite Trypanosoma brucei obtains iron from its mammalian host by receptor-mediated endocytosis of host transferrin through its own unique transferrin receptor (TbTfR). Expression of TbTfR rapidly increases upon iron starvation by post-transcriptional regulation through a currently undefined mechanism that is distinct from the mammalian iron response system. We have created reporter cell lines by fusing the TbTfR 3'UTR or a control Aldolase 3'UTR to reporter genes encoding GFP or firefly Luciferase, and inserted the fusions into a bloodstream form cell line at a tagged ribosomal RNA locus. Fusion of the TbTfR 3'UTR is sufficient to significantly repress the expression of the reporter proteins under normal growth conditions. Under iron starvation conditions we observed upregulation of the mRNA and protein level of the TbTfR 3'UTR fusions only, with a magnitude and timing consistent with that reported for upregulation of the TbTfR. We conclude that the dynamic regulation of the T. brucei transferrin receptor in response to iron starvation is mediated via its 3'UTR, and that the effect is independent of genomic location.


Asunto(s)
Regiones no Traducidas 3' , Regulación de la Expresión Génica , Deficiencias de Hierro , Proteínas Protozoarias/biosíntesis , Receptores de Transferrina/biosíntesis , Trypanosoma brucei brucei/metabolismo , Línea Celular , Humanos , Proteínas Protozoarias/genética , Receptores de Transferrina/genética , Trypanosoma brucei brucei/genética
20.
Sci Rep ; 7(1): 17599, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242601

RESUMEN

We report an optimised centrifugal counter-flow elutriation protocol for the rapid and direct isolation of G1 cell cycle synchronised populations of both the procyclic and bloodstream form stages of Trypanosoma brucei that yields viable and proliferative cells. The high quality of the synchronisation achieved can be judged by the uniform DNA content, narrow size distribution, synchronous division, and the maintenance of synchronicity into subsequent cell cycles. We show that early-eluting fractions represent different G1 subpopulations that progress through the cell cycle with distinct temporal profiles post-elutriation, as exemplified by the observation of the maturation of a second flagellar basal body in late G1 phase, DNA replication in S phase, and dimethylation of histone H3 in mitosis/cytokinesis. We use our temporal observations to construct a revised model of the relative timing and duration of the nuclear and kinetoplast cell cycle that differs from the current model.


Asunto(s)
Ciclo Celular/genética , Núcleo Celular/genética , Separación Celular/métodos , Replicación del ADN , ADN de Cinetoplasto/biosíntesis , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética , Centrifugación , Fase G1/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA