Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(34): E3571-80, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114251

RESUMEN

Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Lepidium sativum/crecimiento & desarrollo , Lepidium sativum/genética , Arabidopsis/fisiología , Fenómenos Biomecánicos , Secuencia Conservada , Diploidia , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Germinación/fisiología , Giberelinas/metabolismo , Lepidium sativum/fisiología , Datos de Secuencia Molecular , Mutación , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Temperatura
2.
Talanta ; 112: 85-94, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23708542

RESUMEN

A robust, reliable and high-throughput method for extraction and purification of gibberellins (GAs), a group of tetracyclic diterpenoid carboxylic acids that include endogenous growth hormones, from plant material was developed. The procedure consists of two solid-phase extraction steps (Oasis(®) MCX-HLB and Oasis(®) MAX) and gives selective enrichment and efficient clean-up of these compounds from complex plant extracts. The method was tested with plant extracts of Brassica napus and Arabidopsis thaliana, from which total recovery of internal standards of about 72% was achieved. A rapid baseline chromatographic separation of 20 non-derivatised GAs by ultra performance liquid chromatography is also presented where a reversed-phase chromatographic column Acquity CSH(®) and a mobile phase consisting of methanol and aqueous 10mM-ammonium formate is used. This method enables sensitive and precise quantitation of GAs by MS/MS in multiple-reaction monitoring mode (MRM) by a standard isotope dilution method. Optimal conditions, including final flow rate, desolvation temperature, desolvation gas flow, capillary and cone voltage for effective ionisation in the electrospray ion source were found. All studied GAs were determined as free acids giving dominant quasi-molecular ions of [M-H](-) with limits of detection ranging between 0.08 and 10 fmol and linear ranges over four orders of magnitude. Taking advantage of highly effective chromatographic separation of 20 GAs and very sensitive mass spectrometric detection, the presented bioanalytical method serves as a useful tool for plant biologists studying the physiological roles of these hormones in plant development.


Asunto(s)
Arabidopsis/química , Brassica napus/química , Giberelinas/análisis , Extractos Vegetales/análisis , Cromatografía Liquida/métodos , Flores/química , Brotes de la Planta/química , Extracción en Fase Sólida , Espectrometría de Masas en Tándem/métodos
3.
J Exp Bot ; 63(14): 5337-50, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22821938

RESUMEN

Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA's interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment.


Asunto(s)
Chalconas/farmacología , Procesamiento de Imagen Asistido por Computador/métodos , Lepidium sativum/efectos de los fármacos , Lepidium sativum/embriología , Luz , Agua/metabolismo , Ácido Abscísico/metabolismo , Endospermo/efectos de los fármacos , Endospermo/embriología , Endospermo/genética , Germinación/efectos de los fármacos , Giberelinas/metabolismo , Lepidium sativum/metabolismo , Myrica/química , Semillas/química , Sales de Tetrazolio/química
4.
Plant Cell ; 24(3): 941-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22427334

RESUMEN

Gibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility. In vitro analysis revealed that GA20ox4 has full GA20ox activity, but GA20ox5 catalyzes only the first two reactions of the sequence by which GA(12) is converted to GA(9). GA20ox3 functions almost entirely redundantly with GA20ox1 and -2 at most developmental stages, including the floral transition, while GA20ox4 and -5 have very minor roles. These results are supported by analysis of the gene expression patterns in promoter:ß-glucuronidase reporter lines. We demonstrate that fertility is highly sensitive to GA concentration, that GA20ox1, -2, and -3 have significant effects on floral organ growth and anther development, and that both GA deficiency and overdose impact on fertility. Loss of GA20ox activity causes anther developmental arrest, with the tapetum failing to degrade. Some phenotypic recovery of late flowers in GA-deficient mutants, including ga1-3, indicated the involvement of non-GA pathways in floral development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Flores/crecimiento & desarrollo , Oxigenasas de Función Mixta/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/enzimología , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/biosíntesis , Oxigenasas de Función Mixta/genética , Mutación , Filogenia , Infertilidad Vegetal , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
5.
Plant Cell Physiol ; 53(1): 81-95, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21908442

RESUMEN

Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.


Asunto(s)
Chalconas/farmacología , Ciclohexanonas/farmacología , Endospermo/embriología , Germinación/efectos de los fármacos , Giberelinas/metabolismo , Lepidium sativum/efectos de los fármacos , Lepidium sativum/embriología , Superóxidos/metabolismo , Ácido Abscísico/farmacología , Chalconas/química , Ciclohexanonas/química , Endospermo/efectos de los fármacos , Endospermo/genética , Etilenos/farmacología , Frutas/efectos de los fármacos , Frutas/metabolismo , Duplicación de Gen/efectos de los fármacos , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Germinación/genética , Giberelinas/farmacología , Lepidium sativum/genética , Lepidium sativum/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Exudados de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...