Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 42(3): 555-559, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37971191

RESUMEN

The aim of this study was to assess the viability of four Staphylococcal bacteriophages when exposed to different concentrations of commonly used lavage solutions in the surgical treatment of prosthetic joint infections (PJI). Four tailed Staphylococcal bacteriophages and six different lavage solutions (chlorhexidine 4%, hydrogen peroxide 3%, acetic acid 3%, povidone iodine 10%, sodium hypochlorite 0.5%, and Vashe solution) at 100%, 1%, and 0.01% concentrations were used in this experiment. In addition, the temporal impact of exposing bacteriophages to these lavage solutions was also evaluated at 5-min exposures and 24-h exposures. The results show that the titers of the four bacteriophages were statistically significantly decreased for all lavage solutions (100% and 1%) at 5-min exposures and 24-h exposures. However, with 0.01% concentrations of the lavage solutions, only acetic acid caused a statistically significant decrease in bacteriophage titers compared to normal saline control. Our findings suggest that tailed Staphylococcal bacteriophages do not remain stable in high concentrations of the most commonly used lavage solutions. However, at very dilute concentrations the bacteriophages do remain viable. This has important clinical ramifications in that it shows when using bacteriophage therapy for PJI it is critical to thoroughly wash out any lavage solutions before the introduction of therapeutic bacteriophages especially when acetic acid is used.


Asunto(s)
Bacteriófagos , Infecciones Estafilocócicas , Humanos , Fagos de Staphylococcus , Irrigación Terapéutica/métodos , Povidona Yodada , Clorhexidina , Acetatos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico
2.
Pharmaceutics ; 12(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486228

RESUMEN

The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA