Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Europace ; 25(9)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477946

RESUMEN

AIMS: Intracardiac echocardiography (ICE) is a useful but operator-dependent tool for left atrial (LA) anatomical rendering during atrial fibrillation (AF) ablation. The CARTOSOUND FAM Module, a new deep learning (DL) imaging algorithm, has the potential to overcome this limitation. This study aims to evaluate feasibility of the algorithm compared to cardiac computed tomography (CT) in patients undergoing AF ablation. METHODS AND RESULTS: In 28 patients undergoing AF ablation, baseline patient information was recorded, and three-dimensional (3D) shells of LA body and anatomical structures [LA appendage/left superior pulmonary vein/left inferior pulmonary vein/right superior pulmonary vein/right inferior pulmonary vein (RIPV)] were reconstructed using the DL algorithm. The selected ultrasound frames were gated to end-expiration and max LA volume. Ostial diameters of these structures and carina-to-carina distance between left and right pulmonary veins were measured and compared with CT measurements. Anatomical accuracy of the DL algorithm was evaluated by three independent electrophysiologists using a three-anchor scale for LA anatomical structures and a five-anchor scale for LA body. Ablation-related characteristics were summarized. The algorithm generated 3D reconstruction of LA anatomies, and two-dimensional contours overlaid on ultrasound input frames. Average calculation time for LA reconstruction was 65 s. Mean ostial diameters and carina-to-carina distance were all comparable to CT without statistical significance. Ostial diameters and carina-to-carina distance also showed moderate to high correlation (r = 0.52-0.75) except for RIPV (r = 0.20). Qualitative ratings showed good agreement without between-rater differences. Average procedure time was 143.7 ± 43.7 min, with average radiofrequency time 31.6 ± 10.2 min. All patients achieved ablation success, and no immediate complications were observed. CONCLUSION: DL algorithm integration with ICE demonstrated considerable accuracy compared to CT and qualitative physician assessment. The feasibility of ICE with this algorithm can potentially further streamline AF ablation workflow.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Inteligencia Artificial , Estudios de Factibilidad , Ecocardiografía/métodos , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/cirugía , Imagenología Tridimensional/métodos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Algoritmos , Ablación por Catéter/métodos
2.
J Cardiovasc Electrophysiol ; 29(11): 1480-1488, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230079

RESUMEN

BACKGROUND: Automated algorithms may identify focal (FA) and rotational (RoA) activations during persistent atrial fibrillation (PeAF). OBJECTIVE: To evaluate an automated algorithm for characterizing and assessing significance of FA/RoA. METHODS: Eighty-six PeAF ablation patients (1411 maps) were analyzed. Maps were obtained with a 64-electrode basket using CARTOFINDER, which filters/annotates atrial unipolar electrograms over 30 seconds. Operators ablated FA/RoA followed by pulmonary vein isolation (PVI). The automated algorithm was retrospectively applied using QS patterns to identify FA and sequential activation gradients for RoA without phase mapping. Algorithm-identified FA and RoA were validated against blinded adjudicators. Ablation of algorithm-identified FA/RoA was related to procedural AF termination. RESULTS: 73% ± 18% of electrodes (65% ± 11% atrial surface area) were adequate for analysis. Compared with adjudicators, the algorithm had a sensitivity of 84% for FA and 86% for RoA. There were 4 ± 2 FA and 2 ± 2 RoA per patient. FA occurred 8 ± 6 times during the 30-second window (cumulative duration 8 ± 6 seconds). RoA occurred 5 ± 3 times (median 2, consecutive rotations) with a cumulative duration of 3 ± 2 seconds. Compared to patients without procedural AF termination, patients with termination had more FA ablated (75% vs 38%, P = 0.006). AF termination was not predicted by percentage of RoA ablated although there was a trend towards a higher percentage of left atrial RoA ablated ( P = 0.06). CONCLUSION: An automated algorithm had high sensitivity for FA and RoA. Acute AF termination was associated with FA ablation but not RoA ablation. Future studies need to define the significance of FA and RoA and whether they are overlapping or separate mechanisms.


Asunto(s)
Algoritmos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Anciano , Fibrilación Atrial/diagnóstico , Ablación por Catéter/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Venas Pulmonares/cirugía , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...