Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Case Rep Endocrinol ; 2016: 2691385, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27579188

RESUMEN

G-protein coupled receptors (GPCRs) mediate a wide spectrum of biological activities. The GNAS complex locus encodes the stimulatory alpha subunit of the guanine nucleotide binding protein (Gsα) and regulates production of the second messenger cyclic AMP (cAMP). Loss-of-function GNAS mutations classically lead to Albright's Hereditary Osteodystrophy (AHO) and pseudohypoparathyroidism, often with significant effects on bone formation and mineral metabolism. We present the case of a child who exhibits clinical features of osteolysis, multiple childhood fractures, and neonatal SIADH. Exome sequencing revealed a novel de novo heterozygous missense mutation of GNAS (c.163A

2.
Stem Cell Res Ther ; 7(1): 115, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27530160

RESUMEN

BACKGROUND: The Activin A and bone morphogenetic protein (BMP) pathways are critical regulators of the immune system and of bone formation. Inappropriate activation of these pathways, as in conditions of congenital heterotopic ossification, are thought to activate an osteogenic program in endothelial cells. However, if and how this occurs in human endothelial cells remains unclear. METHODS: We used a new directed differentiation protocol to create human induced pluripotent stem cell (hiPSC)-derived endothelial cells (iECs) from patients with fibrodysplasia ossificans progressiva (FOP), a congenital disease of heterotopic ossification caused by an activating R206H mutation in the Activin A type I receptor (ACVR1). This strategy allowed the direct assay of the cell-autonomous effects of ACVR1 R206H in the endogenous locus without the use of transgenic expression. These cells were challenged with BMP or Activin A ligand, and tested for their ability to activate osteogenesis, extracellular matrix production, and differential downstream signaling in the BMP/Activin A pathways. RESULTS: We found that FOP iECs could form in conditions with low or absent BMP4. These conditions are not normally permissive in control cells. FOP iECs cultured in mineralization media showed increased alkaline phosphatase staining, suggesting formation of immature osteoblasts, but failed to show mature osteoblastic features. However, FOP iECs expressed more fibroblastic genes and Collagen 1/2 compared to control iECs, suggesting a mechanism for the tissue fibrosis seen in early heterotopic lesions. Finally, FOP iECs showed increased SMAD1/5/8 signaling upon BMP4 stimulation. Contrary to FOP hiPSCs, FOP iECs did not show a significant increase in SMAD1/5/8 phosphorylation upon Activin A stimulation, suggesting that the ACVR1 R206H mutation has a cell type-specific effect. In addition, we found that the expression of ACVR1 and type II receptors were different in hiPSCs and iECs, which could explain the cell type-specific SMAD signaling. CONCLUSIONS: Our results suggest that the ACVR1 R206H mutation may not directly increase the formation of mature chondrogenic or osteogenic cells by FOP iECs. Our results also show that BMP can induce endothelial cell dysfunction, increase expression of fibrogenic matrix proteins, and cause differential downstream signaling of the ACVR1 R206H mutation. This iPSC model provides new insight into how human endothelial cells may contribute to the pathogenesis of heterotopic ossification.


Asunto(s)
Receptores de Activinas Tipo I/genética , Proteína Morfogenética Ósea 4/metabolismo , Colágeno/metabolismo , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miositis Osificante/genética , Proteínas Smad/metabolismo , Activinas/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Condrogénesis/genética , Condrogénesis/fisiología , Células Endoteliales/fisiología , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Ligandos , Mutación , Miositis Osificante/metabolismo , Miositis Osificante/patología , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Osteoblastos/metabolismo , Osteoblastos/fisiología , Osteogénesis/fisiología , Fosforilación/genética , Fosforilación/fisiología , Transducción de Señal/fisiología
3.
J Bone Miner Res ; 30(10): 1896-904, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25917236

RESUMEN

G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair.


Asunto(s)
AMP Cíclico/metabolismo , Curación de Fractura/genética , Fracturas Óseas , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/genética , Sistemas de Mensajero Secundario , Animales , AMP Cíclico/genética , Femenino , Fracturas Óseas/genética , Fracturas Óseas/metabolismo , Fracturas Óseas/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Transgénicos , Osteoblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA