Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Soil Ecol ; 166: None, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34602751

RESUMEN

Uganda faces a considerable challenge to match its food production to an annual population growth rate of 3%. Cooking bananas are the country's most produced staple crop but the annual national harvest is not increasing. The crop grows on infertile soils that are normally fertilised organically and often susceptible to erosion. Soil nematodes are well-established as bioindicators of soil quality that can support environmental monitoring and assessment of the sustainability of agricultural systems. These invertebrates are a highly ranked indicator of biodiversity with molecular approaches available. Consequently, we have applied next-generation DNA sequencing of soil nematodes to evaluate soil quality of Ugandan banana plantations. The aim is to establish a method for constructing an aspect of an environmental biosafety dossier with the future aim of assessing the impact of transgenic crops and improving current cropping systems. The soil samples did not differ significantly in any of the measured soil chemistry factors, soil texture or percentage of organic matter. Thirty taxons of soil nematodes other than the plant parasites were recovered from soil supporting nine banana plantations plus three each from coffee and banana-coffee interplants from East and West Uganda. Cluster analysis correctly allocated each plantation to the crop/intercrop being grown when based on the abundance of taxa rather than taxa presence or absence. This indicates that the host has considerable effects on the abundance of specific nematode species within the soil. Overall, nematodes were more abundant in soil from coffee plantations than from banana-coffee interplants with the lowest values being from fields supporting just banana. Only the basal and trophic diversity indices and the percentage of nematodes that are rapid colonisers varied between the three plantation types. The soil of all fifteen plantations can be classified as having a mature soil web condition with low physical disturbance, limited chemical stressors, moderately high nutrient enrichment and balanced decomposition channels.

2.
J Exp Bot ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34453432

RESUMEN

The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1, and retinoblastoma related 1, which are down-regulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and demonstrate that this may rely, at least in part, on hindering the function of host EBP1.

3.
J Exp Bot ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34310681

RESUMEN

The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.

4.
Ecol Evol ; 11(7): 2997-3003, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33841761

RESUMEN

Plants typically interact with multiple above- and below-ground organisms simultaneously, with their symbiotic relationships spanning a continuum ranging from mutualism, such as with arbuscular mycorrhizal fungi (AMF), to parasitism, including symbioses with plant-parasitic nematodes (PPN).Although research is revealing the patterns of plant resource allocation to mutualistic AMF partners under different host and environmental constraints, the root ecosystem, with multiple competing symbionts, is often ignored. Such competition is likely to heavily influence resource allocation to symbionts.Here, we outline and discuss the competition between AMF and PPN for the finite supply of host plant resources, highlighting the need for a more holistic understanding of the influence of below-ground interactions on plant resource allocation. Based on recent developments in our understanding of other symbiotic systems such as legume-rhizobia and AMF-aphid-plant, we propose hypotheses for the distribution of plant resources between contrasting below-ground symbionts and how such competition may affect the host.We identify relevant knowledge gaps at the physiological and molecular scales which, if resolved, will improve our understanding of the true ecological significance and potential future exploitation of AMF-PPN-plant interactions in order to optimize plant growth. To resolve these outstanding knowledge gaps, we propose the application of well-established methods in isotope tracing and nutrient budgeting to monitor the movement of nutrients between symbionts. By combining these approaches with novel time of arrival experiments and experimental systems involving multiple plant hosts interlinked by common mycelial networks, it may be possible to reveal the impact of multiple, simultaneous colonizations by competing symbionts on carbon and nutrient flows across ecologically important scales.

5.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585878

RESUMEN

Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Arabidopsis/genética , Masculino , Enfermedades de las Plantas , Interferencia de ARN , ARN Mensajero , Tylenchoidea/genética
6.
PLoS Pathog ; 16(10): e1008884, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007049

RESUMEN

Plant parasitic nematodes are microscopic pathogens that invade plant roots and cause extensive damage to crops. We have used a chemical biology approach to define mechanisms underpinning their parasitic behaviour: We discovered that reserpine, a plant alkaloid that inhibits the vesicular monoamine transporter (VMAT), potently impairs the ability of the potato cyst nematode Globodera pallida to enter the host plant root. We show this is due to an inhibition of serotonergic signalling that is essential for activation of the stylet which is used to access the host root. Prompted by this we identified core molecular components of G. pallida serotonin signalling encompassing the target of reserpine, VMAT; the synthetic enzyme for serotonin, tryptophan hydroxylase; the G protein coupled receptor SER-7 and the serotonin-gated chloride channel MOD-1. We cloned each of these molecular components and confirmed their functional identity by complementation of the corresponding C. elegans mutant thus mapping out serotonergic signalling in G. pallida. Complementary approaches testing the effect of chemical inhibitors of each of these signalling elements on discrete sub-behaviours required for parasitism and root invasion reinforce the critical role of serotonin. Thus, targeting the serotonin signalling pathway presents a promising new route to control plant parasitic nematodes.


Asunto(s)
Protección de Cultivos/métodos , Interacciones Huésped-Patógeno , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Serotonina/metabolismo , Transducción de Señal , Solanum tuberosum/metabolismo , Animales , Solanum tuberosum/parasitología
7.
Sci Rep ; 8(1): 17302, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470775

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are an important group of plant parasitic nematodes that induce within host plant roots unique feeding site structures, termed giant cells, which supply nutrient flow to the nematode. A comparative in situ analysis of cell wall polysaccharides in the giant cells of three host species (Arabidopsis, maize and aduki bean) infected with Meloidogyne incognita has been carried out. Features common to giant cell walls of all three species include the presence of high-esterified pectic homogalacturonan, xyloglucan and pectic arabinan. The species-specific presence of xylan and mixed-linkage glucan (MLG) epitopes in giant cell walls of maize reflected that host's taxonomic group. The LM5 galactan and LM21 mannan epitopes were not detected in the giant cell walls of aduki bean but were detected in Arabidopsis and maize giant cell walls. The LM2 arabinogalactan-protein epitope was notable for its apparent global variations in root cell walls as a response to infection across the three host species. Additionally, a set of Arabidopsis cell wall mutants were used to determine any impacts of altered cell wall structures on M. incognita infection. Disruption of the arabinogalactan-protein 8 gene had the greatest impact and resulted in an increased infection rate.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Tylenchoidea/fisiología , Vigna/metabolismo , Zea mays/metabolismo , Animales , Arabidopsis/parasitología , Pared Celular/química , Pared Celular/parasitología , Glucanos/metabolismo , Interacciones Huésped-Parásitos , Mananos/metabolismo , Enfermedades de las Plantas/parasitología , Raíces de Plantas/química , Raíces de Plantas/parasitología , Vigna/parasitología , Xilanos/metabolismo , Zea mays/parasitología
8.
Front Plant Sci ; 9: 1278, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30237805

RESUMEN

Plants suffer multiple, simultaneous biotic threats from both above and below ground. These pests and/or pathogens are commonly studied on an individual basis and the effects of above-ground pests on below-ground pathogens are poorly defined. Root exudates from potato plants (Solanum tuberosum L.) were analyzed to characterize the top-down plant-mediated interactions between a phloem-sucking herbivore (Myzus persicae) and a sedentary, endoparasitic nematode (Globodera pallida). Increasing inocula of the aphid, M. persicae, reduced the root mass of potato plants. Exudates collected from these roots induced significantly lower hatching of second-stage juveniles from G. pallida eggs over a 28-day period, than those from uninfested control plants. Inhibition of hatch was significantly positively correlated with size of aphid inoculum. Diminished hatching was partially recovered after treatment with root exudate from uninfested potato plants indicating that the effect on hatching is reversible but cannot be fully recovered. Glucose and fructose content was reduced in root exudates from aphid-infested potato plants compared to controls and these sugars were found to induce hatching of G. pallida, but not to the same degree as potato root exudates (PRE). Supplementing aphid-infested PRE with sugars did not recover the hatching potential of the treatment, suggesting that additional compounds play an important role in egg hatch. The first gene upregulated in the closely related potato cyst nematode Globodera rostochiensis post-exposure to host root exudate, Neprilysin-1, was confirmed to be upregulated in G. pallida cysts after exposure to PRE and was also upregulated by the sugar treatments. Significantly reduced upregulation of Gpa-nep-1 was observed in cysts treated with root exudates from potato plants infested with greater numbers of aphids. Our data suggest that aphid infestation of potato plants affects the composition of root exudates, with consequential effects on the hatching and gene expression of G. pallida eggs. This work shows that an above-ground pest can indirectly impact the rhizosphere and reveals secondary effects for control of an economically important below-ground pathogen.

9.
Mol Biol Evol ; 35(10): 2401-2413, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29955862

RESUMEN

Managing the emergence and spread of crop pests and pathogens is essential for global food security. Understanding how organisms have adapted to their native climate is key to predicting the impact of climate change. The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens that cause yield losses of up to 50% in potato. The two species have different thermal optima that may relate to differences in the altitude of their regions of origin in the Andes. Here, we demonstrate that juveniles of G. pallida are less able to recover from heat stress than those of G. rostochiensis. Genome-wide analysis revealed that while both Globodera species respond to heat stress by induction of various protective heat-inducible genes, G. pallida experiences heat stress at lower temperatures. We use C. elegans as a model to demonstrate the dependence of the heat stress response on expression of Heat Shock Factor-1 (HSF-1). Moreover, we show that hsp-110 is induced by heat stress in G. rostochiensis, but not in the less thermotolerant G. pallida. Sequence analysis revealed that this gene and its promoter was duplicated in G. rostochiensis and acquired thermoregulatory properties. We show that hsp-110 is required for recovery from acute thermal stress in both C. elegans and in G. rostochiensis. Our findings point towards an underlying molecular mechanism that allows the differential expansion of one species relative to another closely related species under current climate change scenarios. Similar mechanisms may be true of other invertebrate species with pest status.


Asunto(s)
Cambio Climático , Duplicación de Gen , Proteínas del Choque Térmico HSP110/genética , Respuesta al Choque Térmico , Rabdítidos/genética , Animales , Femenino , Proteínas del Choque Térmico HSP110/metabolismo , Calor , Rabdítidos/metabolismo , Especificidad de la Especie
10.
PLoS Genet ; 14(4): e1007310, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29641602

RESUMEN

Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.


Asunto(s)
Productos Agrícolas/parasitología , Genes Esenciales , Genes de Helminto , Glutatión Sintasa/genética , Tylenchida/genética , Animales , Regulación Enzimológica de la Expresión Génica , Interacciones Huésped-Parásitos
11.
Plant Biotechnol J ; 16(2): 520-529, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28703405

RESUMEN

Double-stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal alpha subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison with Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3-fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9-fold and fourfold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7- and twofold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9- and 5.6-fold. There was no detectable RNAi effect on nontarget nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of nonprotein defences to provide broad resistance to pests and pathogens of crops.


Asunto(s)
Musa/parasitología , Animales , Productos Agrícolas/genética , Productos Agrícolas/parasitología , Musa/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Interferencia de ARN , Tylenchoidea/patogenicidad
12.
Front Plant Sci ; 8: 1897, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209337

RESUMEN

Plants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear. The inducible systemic responses of the potato (Solanum tuberosum L.) host plant were analyzed to characterize the plant-mediated indirect interactions between a sedentary, endoparasitic nematode (Globodera pallida), and a phloem-sucking herbivore (Myzus persicae). The reproductive success of M. persicae was greater on potato plants pre-infected with G. pallida compared to control plants. Salicylic acid (SA) increased systemically in the leaves of potato plants following nematode and aphid infection singly with a corresponding increase in expression of SA-mediated marker genes. An increase in jasmonic acid associated with aphid infection was suppressed when plants were co-infected with nematodes. Our data suggests a positive, asymmetric interaction between a sedentary endoparasitic nematode and a sap-sucking insect. The systemic response of the potato plant following infection with G. pallida indirectly influences the performance of M. persicae. This work reveals additional secondary benefits of controlling individual crop pests.

13.
Front Plant Sci ; 8: 1087, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680436

RESUMEN

Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

14.
Glob Chang Biol ; 23(11): 4497-4507, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28261933

RESUMEN

The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium- and high-emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars.


Asunto(s)
Cambio Climático , Solanum tuberosum/parasitología , Tylenchoidea/fisiología , Animales , Femenino , Suelo , Reino Unido
15.
Front Plant Sci ; 7: 1122, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27516765

RESUMEN

Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant-nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield.

16.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27286965

RESUMEN

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Asunto(s)
Genoma de Protozoos , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Tylenchoidea/genética , Tylenchoidea/patogenicidad , Animales , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Islas Genómicas , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Estadios del Ciclo de Vida , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Sitios de Empalme de ARN , Empalme del ARN , Transcriptoma , Tylenchoidea/crecimiento & desarrollo , Virulencia/genética
17.
Mol Plant Pathol ; 17(8): 1265-75, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26996971

RESUMEN

Sedentary plant-parasitic nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re-differentiate into unique and metabolically active 'feeding sites'. The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone mimics (RrCEPs), in the syncytia-forming plant parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP-encoding nematode genus identified to date (Meloidogyne), this suggests that CEPs probably evolved de novo in R. reniformis. We have characterized the first member of this large gene family (RrCEP1), demonstrating its significant up-regulation during the plant-nematode interaction and expression in the effector-producing pharyngeal gland cell. All internal CEP domains of multi-domain RrCEPs are followed by di-basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of up-regulating plant nitrate transporter (AtNRT2.1) expression, whilst simultaneously reducing primary root elongation. When a non-CEP-containing, syncytia-forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP-rich environment, a smaller feeding site is produced. We hypothesize that CEPs of R. reniformis represent a two-fold adaptation to sustained biotrophy in this species: (i) increasing host nitrate uptake, whilst (ii) limiting the size of the syncytial feeding site produced.


Asunto(s)
Parásitos/metabolismo , Péptidos/química , Reguladores del Crecimiento de las Plantas/química , Tylenchoidea/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Arabidopsis/parasitología , Genes de Helminto , Interacciones Huésped-Parásitos , Familia de Multigenes , Parásitos/genética , Péptidos/metabolismo , Faringe/citología , Filogenia , Dominios Proteicos , Alineación de Secuencia , Tylenchoidea/genética
18.
Mol Ecol ; 24(23): 5842-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26607216

RESUMEN

Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen-informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field-scale resolution. Most fields contain a single mitotype, one-fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying 'pathoscape'. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of 'hybrids'. This study provides a method for accurate, quantitative and high-throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.


Asunto(s)
Variación Genética , Genética de Población , Solanum tuberosum/parasitología , Tylenchoidea/genética , Animales , Código de Barras del ADN Taxonómico , ADN de Helmintos/genética , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Enfermedades de las Plantas/parasitología , Escocia , Suelo
19.
Sci Rep ; 5: 8127, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25634654

RESUMEN

Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.


Asunto(s)
Resistencia a la Enfermedad , Abastecimiento de Alimentos , Nematodos/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Plantago/parasitología , África , Agricultura , Animales , Análisis por Conglomerados , Flores/fisiología , Necrosis , Hojas de la Planta/anatomía & histología , Raíces de Plantas/parasitología , Plantago/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Análisis de Regresión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Biochem J ; 466(1): 37-44, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25406993

RESUMEN

Knowledge of how drugs are metabolized and excreted is an essential component of understanding their fate within and among target and non-target organisms. Thiabendazole (TBZ) was the first benzimidazole (BZ) to be commercially available and remains one of the most important anthelmintic drugs for medical and veterinary use. We have characterized how Caenorhabditis elegans metabolizes and excretes TBZ. We have shown that TBZ directly binds to the nuclear hormone receptor (NHR)-176 and that this receptor is required for the induction by TBZ of the cytochrome P450 (CYP) encoded by cyp-35d1. Further, RNAi inhibition of cyp-35d1 in animals exposed to TBZ causes a reduction in the quantity of a hydroxylated TBZ metabolite and its glucose conjugate that is detected in C. elegans tissue by HPLC. This final metabolite is unique to nematodes and we also identify two P-glycoproteins (PGPs) necessary for its excretion. Finally, we have shown that inhibiting the metabolism we describe increases the susceptibility of C. elegans to TBZ in wild-type and in resistant genetic backgrounds.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antihelmínticos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Tiabendazol/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Antihelmínticos/farmacología , Biotransformación , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Hidroxilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Tiabendazol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...