Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Phys Lipids ; 194: 85-93, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26496151

RESUMEN

Effective therapeutic agents are lacking for the prevention and reversal of vascular leak, a frequent pathophysiologic result of inflammatory processes such as acute respiratory distress syndrome (ARDS) and sepsis. We previously demonstrated the potent barrier-enhancing effects of related compounds sphingosine 1-phosphate (S1P), the pharmaceutical agent FTY720, and its analog (S)-FTY720 phosphonate (Tys) in models of inflammatory lung injury. In this study, we characterize additional novel FTY720 analogs for their potential to reduce vascular leak as well as utilize them as tools to better understand the mechanisms by which this class of agents modulates permeability. Transendothelial resistance (TER) and labeled dextran studies demonstrate that (R)-methoxy-FTY720 ((R)-OMe-FTY), (R)/(S)-fluoro-FTY720 (FTY-F), and ß-glucuronide-FTY720 (FTY-G) compounds display in vitro barrier-enhancing properties comparable or superior to FTY720 and S1P. In contrast, the (S)-methoxy-FTY720 ((S)-OMe-FTY) analog disrupts lung endothelial cell (EC) barrier integrity in TER studies in association with actin stress fiber formation and robust intracellular calcium release, but independent of myosin light chain or ERK phosphorylation. Additional mechanistic studies with (R)-OMe-FTY, FTY-F, and FTY-G suggest that lung EC barrier enhancement is mediated through lipid raft signaling, Gi-linked receptor coupling to downstream tyrosine phosphorylation events, and S1PR1-dependent receptor ligation. These results provide important mechanistic insights into modulation of pulmonary vascular barrier function by FTY720-related compounds and highlight common signaling events that may assist the development of novel therapeutic tools in the prevention or reversal of the pulmonary vascular leak that characterizes ARDS.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Clorhidrato de Fingolimod/análogos & derivados , Clorhidrato de Fingolimod/farmacología , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Clorhidrato de Fingolimod/química , Humanos , Permeabilidad/efectos de los fármacos , Arteria Pulmonar/metabolismo , Relación Estructura-Actividad
2.
Pulm Circ ; 5(4): 619-30, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697169

RESUMEN

Paxillin is a multifunctional and multidomain focal adhesion adaptor protein. It serves as an important scaffolding protein at focal adhesions by recruiting and binding to structural and signaling molecules. Paxillin tyrosine phosphorylation at Y31 and Y118 is important for paxillin redistribution to focal adhesions and angiogenesis. Hepatocyte growth factor (HGF) and sphingosine-1-phosphate (S1P) are potent stimulators of lamellipodia formation, a prerequisite for endothelial cell migration. The role played by paxillin and its tyrosine phosphorylated forms in HGF- or S1P-induced lamellipodia formation and barrier function is unclear. HGF or S1P stimulated lamellipodia formation, tyrosine phosphorylation of paxillin at Y31 and Y118, and c-Abl in human lung microvascular endothelial cells (HLMVECs). Knockdown of paxillin with small interfering RNA (siRNA) or transfection with paxillin mutants (Y31F or Y118F) mitigated HGF- or S1P-induced lamellipodia formation, translocation of p47 (phox) to lamellipodia, and reactive oxygen species (ROS) generation in HLMVECs. Furthermore, exposure of HLMVECs to HGF or S1P stimulated c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 in a time-dependent fashion, and down-regulation of c-Abl with siRNA attenuated HGF- or S1P-mediated lamellipodia formation, translocation of p47 (phox) to lamellipodia, and endothelial barrier enhancement. In vivo, knockdown of paxillin with siRNA in mouse lungs attenuated ventilator-induced lung injury. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates HGF- or S1P-mediated lamellipodia formation, ROS generation in lamellipodia, and endothelial permeability.

3.
Chem Phys Lipids ; 191: 16-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26272033

RESUMEN

Effective therapeutic agents are lacking for the prevention and reversal of vascular leak, a frequent pathophysiologic result of inflammatory processes such as acute respiratory distress syndrome (ARDS) and sepsis. We previously demonstrated the potent barrier-enhancing effects of related compounds sphingosine 1-phosphate (S1P), the pharmaceutical agent FTY720, and its analog (S)-FTY720 phosphonate (Tys) in models of inflammatory lung injury. In this study, we characterize additional novel FTY720 analogs for their potential to reduce vascular leak as well as utilize them as tools to better understand the mechanisms by which this class of agents modulates permeability. Transendothelial resistance (TER) and labeled dextran studies demonstrate that (R)-methoxy-FTY720 ((R)-OMe-FTY), (R)/(S)-fluoro-FTY720 (FTY-F), and ß-glucuronide-FTY720 (FTY-G) compounds display in vitro barrier-enhancing properties comparable or superior to FTY720 and S1P. In contrast, the (S)-methoxy-FTY720 ((S)-OMe-FTY) analog disrupts lung endothelial cell (EC) barrier integrity in TER studies in association with actin stress fiber formation and robust intracellular calcium release, but independent of myosin light chain or ERK phosphorylation. Additional mechanistic studies with (R)-OMe-FTY, FTY-F, and FTY-G suggest that lung EC barrier enhancement is mediated through lipid raft signaling, Gi-linked receptor coupling to downstream tyrosine phosphorylation events, and S1PR1-dependent receptor ligation. These results provide important mechanistic insights into modulation of pulmonary vascular barrier function by FTY720-related compounds and highlight common signaling events that may assist the development of novel therapeutic tools in the prevention or reversal of the pulmonary vascular leak that characterizes ARDS.


Asunto(s)
Clorhidrato de Fingolimod/análogos & derivados , Calcio/metabolismo , Línea Celular , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Clorhidrato de Fingolimod/farmacología , Fluoruros/química , Glucurónidos/química , Humanos , Lisofosfolípidos/metabolismo , Microscopía Fluorescente , Permeabilidad/efectos de los fármacos , Fosforilación , Arteria Pulmonar/citología , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 308(10): L1025-38, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25795725

RESUMEN

Paxillin is phosphorylated at multiple residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and acute lung injury (ALI) remains unclear. We used siRNA and site-specific nonphosphorylable mutants of paxillin to abrogate the function of paxillin to determine its role in lung endothelial permeability and ALI. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (HLMVECs) resulted in enhanced tyrosine phosphorylation of paxillin at Y31 and Y118 with no significant change in Y181 and significant barrier dysfunction. Knockdown of paxillin with siRNA attenuated LPS-induced endothelial barrier dysfunction and destabilization of VE-cadherin. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase, but not by Src and focal adhesion kinase. c-Abl siRNA significantly reduced LPS-induced endothelial barrier dysfunction. Transfection of HLMVECs with paxillin Y31F, Y118F, and Y31/118F double mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization. In vivo, the c-Abl inhibitor AG957 attenuated LPS-induced pulmonary permeability in mice. Together, these results suggest that c-Abl mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Endotelio Vascular/metabolismo , Lipopolisacáridos/toxicidad , Paxillin/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Animales , Antígenos CD , Cadherinas , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/genética , Células Cultivadas , Endotelio Vascular/patología , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Paxillin/genética , Fosforilación/genética , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/genética , Tirfostinos/farmacología
5.
Am J Respir Crit Care Med ; 190(9): 1032-43, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25180446

RESUMEN

RATIONALE: Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis. OBJECTIVES: We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH). METHODS: SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH). S1P levels in lung tissues from patients with PAH and pulmonary arteries (PAs) from rodent models of HPH were measured. MEASUREMENTS AND MAIN RESULTS: mRNA and protein levels of SphK1, but not SphK2, were significantly increased in the lungs and isolated PA smooth muscle cells (PASMCs) from patients with PAH, and in lungs of experimental rodent models of HPH. S1P levels were increased in lungs of patients with PAH and PAs from rodent models of HPH. Unlike SphK2(-/-) mice, SphK1(-/-) mice were protected against HPH, whereas Sgpl1(+/-) mice were more susceptible to HPH. Pharmacologic SphK1 and S1PR2 inhibition prevented the development of HPH in rodent models of HPH. Overexpression of SphK1 and stimulation with S1P potentially via ligation of S1PR2 promoted PASMC proliferation in vitro, whereas SphK1 deficiency inhibited PASMC proliferation. CONCLUSIONS: The SphK1/S1P axis is a novel pathway in PAH that promotes PASMC proliferation, a major contributor to pulmonary vascular remodeling. Our results suggest that this pathway is a potential therapeutic target in PAH.


Asunto(s)
Hipertensión Pulmonar/etiología , Lisofosfolípidos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Esfingosina/análogos & derivados , Animales , Humanos , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Esfingosina/fisiología , Técnicas de Cultivo de Tejidos
6.
Am J Respir Crit Care Med ; 189(11): 1402-15, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24779708

RESUMEN

RATIONALE: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. OBJECTIVES: To define a role for LYCAT in human and murine models of pulmonary fibrosis. METHODS: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. MEASUREMENTS AND MAIN RESULTS: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. CONCLUSIONS: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Aciltransferasas/genética , Mitocondrias/genética , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/genética , Animales , Biomarcadores/metabolismo , Cardiolipinas/genética , Estudios de Cohortes , Modelos Animales de Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Hibridación in Situ , Leucocitos Mononucleares/metabolismo , Ratones , Mitocondrias/metabolismo , Valor Predictivo de las Pruebas , Fibrosis Pulmonar/enzimología , ARN Mensajero/metabolismo , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
7.
J Biol Chem ; 289(19): 13476-91, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24634221

RESUMEN

Hepatocyte growth factor (HGF) mediated signaling promotes cell proliferation and migration in a variety of cell types and plays a key role in tumorigenesis. As cell migration is important to angiogenesis, we characterized HGF-mediated effects on the formation of lamellipodia, a pre-requisite for migration using human lung microvascular endothelial cells (HLMVECs). HGF, in a dose-dependent manner, induced c-Met phosphorylation (Tyr-1234/1235, Tyr-1349, Ser-985, Tyr-1003, and Tyr-1313), activation of PI3k (phospho-Yp85) and Akt (phospho-Thr-308 and phospho-Ser-473) and potentiated lamellipodia formation and HLMVEC migration. Inhibition of c-Met kinase by SU11274 significantly attenuated c-Met, PI3k, and Akt phosphorylation, suppressed lamellipodia formation and endothelial cell migration. LY294002, an inhibitor of PI3k, abolished HGF-induced PI3k (Tyr-458), and Akt (Thr-308 and Ser-473) phosphorylation and suppressed lamellipodia formation. Furthermore, HGF stimulated p47(phox)/Cortactin/Rac1 translocation to lamellipodia and ROS generation. Moreover, inhibition of c-Met/PI3k/Akt signaling axis and NADPH oxidase attenuated HGF- induced lamellipodia formation, ROS generation and cell migration. Ex vivo experiments with mouse aortic rings revealed a role for c-Met signaling in HGF-induced sprouting and lamellipodia formation. Taken together, these data provide evidence in support of a significant role for HGF-induced c-Met/PI3k/Akt signaling and NADPH oxidase activation in lamellipodia formation and motility of lung endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Pulmón/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Seudópodos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Células Endoteliales/citología , Factor de Crecimiento de Hepatocito/genética , Humanos , Pulmón/citología , Ratones , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-met/genética , Seudópodos/genética
8.
Am J Physiol Cell Physiol ; 306(8): C745-52, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24477234

RESUMEN

The objective of the present study was to determine the impact of simulated apnea with intermittent hypoxia (IH) on endothelial barrier function and assess the underlying mechanism(s). Experiments were performed on human lung microvascular endothelial cells exposed to IH-consisting alternating cycles of 1.5% O2 for 30s followed by 20% O2 for 5 min. IH decreased transendothelial electrical resistance (TEER) suggesting attenuated endothelial barrier function. The effect of IH on TEER was stimulus dependent and reversible after reoxygenation. IH-exposed cells exhibited stress fiber formation and redistribution of cortactin, vascular endothelial-cadherins, and zona occludens-1 junction proteins along with increased intercellular gaps at cell-cell boundaries. Extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) were phosphorylated in IH-exposed cells. Inhibiting either ERK or JNK prevented the IH-induced decrease in TEER and the reorganization of the cytoskeleton and junction proteins. IH increased reactive oxygen species (ROS) levels, and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride, a membrane-permeable antioxidant, prevented ERK and JNK phosphorylation as well as IH-induced changes in endothelial barrier function. These results demonstrate that IH via ROS-dependent activation of MAP kinases leads to reorganization of cytoskeleton and junction proteins resulting in endothelial barrier dysfunction.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oxígeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Citoesqueleto/fisiología , Impedancia Eléctrica , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Humanos , Hipoxia/metabolismo , Uniones Intercelulares/metabolismo , Pulmón/irrigación sanguínea , Estrés Oxidativo , Oxígeno/metabolismo , Fosforilación , Factores de Tiempo
9.
Am J Pathol ; 183(4): 1169-1182, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23933064

RESUMEN

Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.


Asunto(s)
Displasia Broncopulmonar/enzimología , Displasia Broncopulmonar/prevención & control , Hiperoxia/complicaciones , Lisofosfolípidos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Esfingosina/análogos & derivados , Aldehído-Liasas/deficiencia , Aldehído-Liasas/metabolismo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/patología , Humanos , Hiperoxia/enzimología , Hiperoxia/patología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasa 4 , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Neumonía/complicaciones , Neumonía/patología , Alveolos Pulmonares/enzimología , Alveolos Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
10.
Pulm Circ ; 3(1): 108-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23662182

RESUMEN

Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

11.
PLoS One ; 8(5): e63007, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667561

RESUMEN

Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.


Asunto(s)
Quimiotaxis/fisiología , Células Endoteliales/fisiología , Proteínas de Microfilamentos/metabolismo , Arteria Pulmonar/citología , Transducción de Señal/fisiología , Western Blotting , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lisofosfolípidos/farmacología , Proteínas de Microfilamentos/genética , Microscopía Fluorescente , Fosfolipasa D/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/genética , Esfingosina/análogos & derivados , Esfingosina/farmacología , Proteína de Unión al GTP rac1/metabolismo
12.
Part Fibre Toxicol ; 9: 35, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22931549

RESUMEN

BACKGROUND: Exposure to particulate matter (PM) is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. OBJECTIVES: We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC) barrier integrity and enhanced cardiopulmonary dysfunction. METHODS: Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER) in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 µm). Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. RESULTS: PM exposure induced tight junction protein Zona occludens-1 (ZO-1) relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and ß-catenin). N-acetyl-cysteine (NAC, 5 mM) reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2), in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. CONCLUSIONS: These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Calpaína/metabolismo , Endotelio Vascular/efectos de los fármacos , Material Particulado/toxicidad , Canales Catiónicos TRPM/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Acetilcisteína/farmacología , Calcio/metabolismo , Células Cultivadas , Impedancia Eléctrica , Endotelio Vascular/metabolismo , Depuradores de Radicales Libres/farmacología , Humanos , Pulmón/citología , Estrés Oxidativo/efectos de los fármacos , Permeabilidad , Especies Reactivas de Oxígeno/metabolismo
13.
J Biol Chem ; 287(12): 9360-75, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22219181

RESUMEN

We recently demonstrated that hyperoxia (HO) activates lung endothelial cell NADPH oxidase and generates reactive oxygen species (ROS)/superoxide via Src-dependent tyrosine phosphorylation of p47(phox) and cortactin. Here, we demonstrate that the non-muscle ~214-kDa myosin light chain (MLC) kinase (nmMLCK) modulates the interaction between cortactin and p47(phox) that plays a role in the assembly and activation of endothelial NADPH oxidase. Overexpression of FLAG-tagged wild type MLCK in human pulmonary artery endothelial cells enhanced interaction and co-localization between cortactin and p47(phox) at the cell periphery and ROS production, whereas abrogation of MLCK using specific siRNA significantly inhibited the above. Furthermore, HO stimulated phosphorylation of MLC and recruitment of phosphorylated and non-phosphorylated cortactin, MLC, Src, and p47(phox) to caveolin-enriched microdomains (CEM), whereas silencing nmMLCK with siRNA blocked recruitment of these components to CEM and ROS generation. Exposure of nmMLCK(-/-) null mice to HO (72 h) reduced ROS production, lung inflammation, and pulmonary leak compared with control mice. These results suggest a novel role for nmMLCK in hyperoxia-induced recruitment of cytoskeletal proteins and NADPH oxidase components to CEM, ROS production, and lung injury.


Asunto(s)
Cortactina/metabolismo , Células Endoteliales/enzimología , Hiperoxia/enzimología , Pulmón/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Cortactina/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Activación Enzimática , Humanos , Hiperoxia/genética , Hiperoxia/metabolismo , Pulmón/citología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/genética , NADPH Oxidasas/genética , Unión Proteica
14.
Microvasc Res ; 83(1): 45-55, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21570987

RESUMEN

Lipid peroxidation of polyunsaturated fatty acids generates bioactive aldehydes, which exhibit pro- and anti-inflammatory effects in cells and tissues. Accumulating evidence indicates that 4-hydroxynonenal (4-HNE), a major aldehyde derived from lipid peroxidation of n-6 polyunsaturated fatty acids trigger signals that modulates focal adhesion and adherens junction proteins thereby inducing endothelial barrier dysfunction. Similarly, oxidized phospholipids (Ox-PLs) generated by lipid peroxidation of phospholipids with polyunsaturated fatty acids have been implicated in atherogenesis, inflammation and gene expression. Interestingly, physiological concentration of Ox-PLs is anti-inflammatory and protect against endotoxin- and ventilator-associated acute lung injury. Thus, excess generation of bioactive hydroxyalkenals and Ox-PLs during oxidative stress contributes to pathophysiology of various diseases by modulating signaling pathways that regulate pro- and anti-inflammatory responses and barrier regulation. This review summarizes the role of 4-HNE and Ox-PLs affecting cell signaling pathways and endothelial barrier dysfunction through modulation of the activities of proteins/enzymes by Michael adducts formation, enhancing the level of protein tyrosine phosphorylation of the target proteins, and by reorganization of cytoskeletal, focal adhesion, and adherens junction proteins. A better understanding of molecular mechanisms of hydroxyalkenals- and Ox-PLs-mediated pro-and anti-inflammatory responses and barrier function may lead to development of novel therapies to ameliorate oxidative stress related cardio-pulmonary disorders.


Asunto(s)
Uniones Adherentes/metabolismo , Aldehídos/metabolismo , Permeabilidad Capilar , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Adhesiones Focales/metabolismo , Fosfolípidos/metabolismo , Animales , Ácidos Grasos Insaturados/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Estrés Oxidativo , Transducción de Señal
15.
Am J Physiol Lung Cell Mol Physiol ; 300(6): L840-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21478254

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates cellular functions by ligation via G protein-coupled S1P receptors. In addition to its extracellular action, S1P also has intracellular effects; however, the signaling pathways modulated by intracellular S1P remain poorly defined. We have previously demonstrated a novel pathway of intracellular S1P generation in human lung endothelial cells (ECs). In the present study, we examined the role of intracellular S1P generated by photolysis of caged S1P on EC barrier regulation and signal transduction. Intracellular S1P released from caged S1P caused mobilization of intracellular calcium, induced activation of MAPKs, redistributed cortactin, vascular endothelial cadherin, and ß-catenin to cell periphery, and tightened endothelial barrier in human pulmonary artery ECs. Treatment of cells with pertussis toxin (PTx) had no effect on caged S1P-mediated effects on Ca(2+) mobilization, reorganization of cytoskeleton, cell adherens junction proteins, and barrier enhancement; however, extracellular S1P effects were significantly attenuated by PTx. Additionally, intracellular S1P also activated small GTPase Rac1 and its effector Ras GTPase-activating-like protein IQGAP1, suggesting involvement of these proteins in the S1P-mediated changes in cell-to-cell adhesion contacts. Downregulation of sphingosine kinase 1 (SphK1), but not SphK2, with siRNA or inhibition of SphK activity with an inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (CII) attenuated exogenously administrated S1P-induced EC permeability. Furthermore, S1P1 receptor inhibitor SB649164 abolished exogenous S1P-induced transendothelial resistance changes but had no effect on intracellular S1P generated by photolysis of caged S1P. These results provide evidence that intracellular S1P modulates signal transduction in lung ECs via signaling pathway(s) independent of S1P receptors.


Asunto(s)
Endotelio Vascular/metabolismo , Pulmón/efectos de los fármacos , Organofosfatos/farmacología , Arteria Pulmonar/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Uniones Adherentes/metabolismo , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Calcio/metabolismo , Células Cultivadas , Cortactina/genética , Cortactina/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Endotelio Vascular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Toxina del Pertussis/farmacología , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fotólisis , Arteria Pulmonar/efectos de los fármacos , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esfingosina/farmacología , beta Catenina/genética , beta Catenina/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
16.
Am J Respir Cell Mol Biol ; 45(2): 426-35, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21148740

RESUMEN

A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate (S1P) in animal models of ALI with reductions in lung edema. As S1P levels are tightly regulated by synthesis and degradation, we tested the hypothesis that inhibition of S1P lyase (S1PL), the enzyme that irreversibly degrades S1P via cleavage, could ameliorate ALI. Intratracheal instillation of LPS to mice enhanced S1PL expression, decreased S1P levels in lung tissue, and induced lung inflammation and injury. LPS challenge of wild-type mice receiving 2-acetyl-4(5)-[1(R),2(S),3(R),4-tetrahydroxybutyl]-imidazole to inhibit S1PL or S1PL(+/-) mice resulted in increased S1P levels in lung tissue and bronchoalveolar lavage fluids and reduced lung injury and inflammation. Moreover, down-regulation of S1PL expression by short interfering RNA (siRNA) in primary human lung microvascular endothelial cells increased S1P levels, and attenuated LPS-mediated phosphorylation of p38 mitogen-activated protein kinase and I-κB, IL-6 secretion, and endothelial barrier disruption via Rac1 activation. These results identify a novel role for intracellularly generated S1P in protection against ALI and suggest S1PL as a potential therapeutic target.


Asunto(s)
Lesión Pulmonar Aguda/enzimología , Lesión Pulmonar Aguda/prevención & control , Aldehído-Liasas/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Neumonía/enzimología , Neumonía/prevención & control , Lesión Pulmonar Aguda/inducido químicamente , Aldehído-Liasas/fisiología , Animales , Lavado Broncoalveolar , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Immunoblotting , Inyecciones Intraperitoneales , Interleucina-6/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Neumonía/inducido químicamente , ARN Interferente Pequeño/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometría de Masas en Tándem , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
J Biol Chem ; 284(36): 24123-32, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19586906

RESUMEN

Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) delta- and zeta-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by approximately 2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Galpha(i)-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 microm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase delta and zeta attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 microm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.


Asunto(s)
Células Epiteliales/metabolismo , Lipopolisacáridos/toxicidad , Lesión Pulmonar/metabolismo , Lesión Pulmonar/prevención & control , Lisofosfolípidos/farmacología , Mucosa Respiratoria/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/patología , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Ratones , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Mucosa Respiratoria/patología
18.
J Alzheimers Dis ; 17(4): 845-54, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19542618

RESUMEN

Neuronal inflammation is very common in Alzheimer's disease (AD). This inflammation can be caused by infiltration of neutrophils across the blood brain barrier. Endothelial permeability changes are required for the infiltration of high molecular weight components to the brain. Deposition of toxic amyloid-beta (A beta) fibrils in the cerebral vasculature, as well as in brain neurons, has been implicated in the development of AD. This study investigates the effect of A beta fibrils on the permeability of the endothelium and the mechanism for the observed permeability changes. A beta(1-40) and A beta(1-42) fibrils, but not monomers, were found to increase permeability of bovine pulmonary arterial endothelial cells in a dose- and time dependent manner as detected by transendothelial electrical resistance. This increase in permeability is only partially (25%) inhibited by catalase and is not associated with an increase in cytosolic Ca+2 or tyrosine phosphorylation. These results indicate that hydrogen peroxide is not the primary mediator for the permeability changes. Treatment of cells with both amyloid fibrils resulted in stress fiber formation, disruption and aggregation of actin filaments, and cellular gap formation. The results of this study reveal that A beta increases the permeability of endothelium by inducing change in the cytoskeleton network.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Bovinos , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Impedancia Eléctrica , Endotelio Vascular/citología , Microscopía Fluorescente , Organofosfatos/metabolismo , Polímeros/metabolismo , Arteria Pulmonar/citología , Factores de Tiempo
19.
J Biol Chem ; 284(22): 15339-52, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19366706

RESUMEN

Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47(phox) to cell periphery, and ROS production. Exposure of [(32)P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O(2) and 5% CO(2)) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [(32)P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of O(2)(.)/reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [(32)P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47(phox) redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47(phox) translocation and ROS formation in human lung endothelial cells.


Asunto(s)
Células Endoteliales/enzimología , Hiperoxia/enzimología , NADPH Oxidasas/metabolismo , Fosfolipasa D/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Biocatálisis , Membrana Celular/enzimología , Cortactina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/citología , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Pulmón/citología , Proteínas Mutantes/metabolismo , Fosfotirosina/metabolismo , Unión Proteica , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Familia-src Quinasas/metabolismo
20.
Microvasc Res ; 77(2): 174-86, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19121327

RESUMEN

Acute lung injury represents the result of multiple pathways initiated by local or systemic insults and is characterized by profound vascular permeability, pulmonary edema, and life-threatening respiratory failure. Permeability-reducing therapies are of potential clinical utility but are currently unavailable. We hypothesized that polyethylene glycol (PEG) compounds, inert and non-toxic polymers that serve as a surrogate mucin lining in intestinal epithelium, may attenuate agonist-mediated lung endothelial cell (EC) barrier dysfunction. High molecular weight PEG (PEG15-20) produced rapid, dose-dependent increases in transendothelial electrical resistance (TER) in human lung endothelium cultured on gold microelectrodes, reflecting increased paracellular integrity. The maximal effective concentration of 8% PEG induced a sustained 125% increase in TER (40 h), results similar to barrier-enhancing agonists such as sphingosine 1-phosphate (40% increase in TER). Maximal PEG barrier enhancement was achieved at 45-60 min and PEG effectively reversed both thrombin- and LPS-induced EC barrier dysfunction. Consistent with the increase in TER, immunofluorescent studies demonstrated that PEG produced significant cytoskeletal rearrangement with formation of well-defined cortical actin rings and lamellipodia containing the actin-binding proteins, cortactin and MLCK, known participants in cell-matrix and cell-cell junctional adhesion. Finally, PEG challenge induced rapid alterations in levels of MAP kinase and MLC phosphorylation. In summary, PEG joins a number of EC barrier-regulatory agents which rapidly activate barrier-enhancing signal transduction pathways which target the cytoskeleton and provides a potential therapeutic strategy in inflammatory lung injury.


Asunto(s)
Actinas/metabolismo , Células Endoteliales/efectos de los fármacos , Pulmón/citología , Pulmón/efectos de los fármacos , Polietilenglicoles/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Impedancia Eléctrica , Células Endoteliales/metabolismo , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Microscopía Fluorescente , Microscopía por Video , Peso Molecular , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Trombina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA