Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961122

RESUMEN

In the preclinical model of peripheral arterial disease (PAD), M2-like anti-inflammatory macrophage polarization and angiogenesis are required for revascularization. The regulation of cell metabolism and inflammation in macrophages is tightly linked to mitochondrial dynamics. Drp1, a mitochondrial fission protein, has shown context-dependent macrophage phenotypes with both pro- and anti-inflammatory characteristics. However, the role of macrophage Drp1 in reparative neovascularization remains unexplored. Here we show that Drp1 expression was significantly increased in F4/80+ macrophages within ischemic muscle at day 3 following hindlimb ischemia (HLI), an animal model of PAD. Myeloid-specific Drp1 -/- mice exhibited reduced limb perfusion recovery, angiogenesis and muscle regeneration after HLI. These effects were concomitant with enhancement of pro-inflammatory M1-like macrophages, p-NFkB, and TNFα levels, while showing reduction in anti-inflammatory M2-like macrophages and p-AMPK in ischemic muscle of myeloid Drp1 -/- mice. In vitro, Drp1 -/- macrophages under hypoxia serum starvation (HSS), an in vitro PAD model, demonstrated enhanced glycolysis via reducing p-AMPK as well as mitochondrial dysfunction and excessive mitochondrial ROS, resulting in increased M1-gene and reduced M2-gene expression. Conditioned media from HSS-treated Drp1 -/- macrophages exhibited increased secretion of pro-inflammatory cytokines and suppressed angiogenic responses in cultured endothelial cells. Thus, Drp1 deficiency in macrophages under ischemia drives inflammatory metabolic reprogramming and macrophage polarization, thereby limiting revascularization in experimental PAD.

2.
Hypertension ; 80(10): 2059-2071, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37729634

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown. METHODS: Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction. RESULTS: T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation. CONCLUSIONS: EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Endoteliales , Animales , Ratones , Piruvaldehído , Glucólisis , Endotelio
3.
J Am Heart Assoc ; 12(7): e027986, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36974760

RESUMEN

Background In endothelial cells (ECs), glycolysis, regulated by PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, isoform-3), is the major metabolic pathway for ATP generation. In preclinical peripheral artery disease models, VEGF165a (vascular endothelial growth factor165a) and microRNA-93 both promote angiogenesis. Methods and Results Mice following hind-limb ischemia (HLI) and ECs with, and without, hypoxia and serum starvation were examined with, and without, microRNA-93 and VEGF165a. Post-HLI perfusion recovery was monitored. EC metabolism was studied using seahorse assay, and the expression and activity of major metabolism genes were assessed. Reactive oxygen species levels and EC permeability were evaluated. C57Bl/6J mice generated a robust angiogenic response to HLI, with ECs from ischemic versus nonischemic muscle demonstrating no increase in glycolysis. Balb/CJ mice generated a poor angiogenic response post-HLI; ischemic versus nonischemic ECs demonstrated significant increase in glycolysis. MicroRNA-93-treated Balb/CJ mice post-HLI showed better perfusion recovery, with ischemic versus nonischemic ECs showing no increase in glycolysis. VEGF165a-treated Balb/CJ mice post-HLI showed no improvement in perfusion recovery with ischemic versus nonischemic ECs showing significant increase in glycolysis. ECs under hypoxia and serum starvation upregulated PFKFB3. In ECs under hypoxia and serum starvation, VEGF165a versus control significantly upregulated PFKFB3 and glycolysis, whereas miR-93 versus control demonstrated no increase in PFKFB3 or glycolysis. MicroRNA-93 versus VEGF165a upregulated glucose-6-phosphate dehydrogenase expression and activity, activating the pentose phosphate pathway. MicroRNA-93 versus control increased reduced nicotinamide adenine dinucleotide phosphate and virtually eliminated the increase in reactive oxygen species. In ECs under hypoxia and serum starvation, VEGF165a significantly increased and miR-93 decreased EC permeability. Conclusions In peripheral artery disease, activation of the pentose phosphate pathway to promote angiogenesis may offer potential therapeutic advantages.


Asunto(s)
MicroARNs , Enfermedad Arterial Periférica , Ratones , Animales , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Arterial Periférica/metabolismo , Hipoxia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glucólisis/fisiología , Isquemia/genética
4.
Angiogenesis ; 26(1): 77-96, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35984546

RESUMEN

VEGFR2 signaling in endothelial cells (ECs) is regulated by reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria, which plays an important role in postnatal angiogenesis. However, it remains unclear how highly diffusible ROS signal enhances VEGFR2 signaling and reparative angiogenesis. Protein disulfide isomerase A1 (PDIA1) functions as an oxidoreductase depending on the redox environment. We hypothesized that PDIA1 functions as a redox sensor to enhance angiogenesis. Here we showed that PDIA1 co-immunoprecipitated with VEGFR2 or colocalized with either VEGFR2 or an early endosome marker Rab5 at the perinuclear region upon stimulation of human ECs with VEGF. PDIA1 silencing significantly reduced VEGF-induced EC migration, proliferation and spheroid sprouting via inhibiting VEGFR2 signaling. Mechanistically, VEGF stimulation rapidly increased Cys-OH formation of PDIA1 via the NOX4-mitochondrial ROS axis. Overexpression of "redox-dead" mutant PDIA1 with replacement of the active four Cys residues with Ser significantly inhibited VEGF-induced PDIA1-CysOH formation and angiogenic responses via reducing VEGFR2 phosphorylation. Pdia1+/- mice showed impaired angiogenesis in developmental retina and Matrigel plug models as well as ex vivo aortic ring sprouting model. Study using hindlimb ischemia model revealed that PDIA1 expression was markedly increased in angiogenic ECs of ischemic muscles, and that ischemia-induced limb perfusion recovery and neovascularization were impaired in EC-specific Pdia1 conditional knockout mice. These results suggest that PDIA1 can sense VEGF-induced H2O2 signal via CysOH formation to promote VEGFR2 signaling and angiogenesis in ECs, thereby enhancing postnatal angiogenesis. The oxidized PDIA1 is a potential therapeutic target for treatment of ischemic vascular diseases.


Asunto(s)
Células Endoteliales , Proteína Disulfuro Isomerasas , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Peróxido de Hidrógeno/metabolismo , Neovascularización Fisiológica , Oxidación-Reducción , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Isquemia/metabolismo
6.
Cells ; 11(18)2022 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36139494

RESUMEN

Inflammation, oxidative stress, and copper (Cu) play an important role in cardiovascular disease, including atherosclerosis. We previously reported that cytosolic Cu chaperone antioxidant-1 (Atox1) translocates to the nucleus in response to inflammatory cytokines or exogenous Cu and that Atox1 is localized at the nucleus in the endothelium of inflamed atherosclerotic aorta. However, the roles of nuclear Atox1 and their function are poorly understood. Here we showed that Atox1 deficiency in ApoE-/- mice with a Western diet exhibited a significant reduction of atherosclerotic lesion formation. In vitro, adenovirus-mediated overexpression of nuclear-targeted Atox1 (Ad-Atox1-NLS) in cultured human endothelial cells (ECs) increased monocyte adhesion and reactive oxygen species (ROS) production compared to control cells (Ad-null). To address the underlying mechanisms, we performed genome-wide mapping of Atox1-regulated targets in ECs, using an unbiased systemic approach integrating sequencing data. Combination of ChIP-Seq and RNA-Seq analyses in ECs transfected with Ad-Atox1-NLS or Ad-null identified 1387 differentially expressed genes (DEG). Motif enrichment assay and KEGG pathway enrichment analysis revealed that 248 differentially expressed genes, including inflammatory and angiogenic genes, were regulated by Atox1-NLS, which was then confirmed by real-time qPCR. Among these genes, functional analysis of inflammatory responses identified CD137, CSF1, and IL5RA as new nuclear Atox1-targeted inflammatory genes, while CD137 is also a key regulator of Atox1-NLS-induced ROS production. These findings uncover new nuclear Atox1 downstream targets involved in inflammation and ROS production and provide insights into the nuclear Atox1 as a potential therapeutic target for the treatment of inflammatory diseases such as atherosclerosis.


Asunto(s)
Aterosclerosis , Cobre , Animales , Aterosclerosis/genética , Cobre/metabolismo , Proteínas Transportadoras de Cobre , Citocinas/metabolismo , Células Endoteliales/metabolismo , Humanos , Inflamación/genética , Ratones , Ratones Noqueados para ApoE , Chaperonas Moleculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma
7.
Front Cardiovasc Med ; 9: 863256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463765

RESUMEN

Recent increased visibility on racial issues in the United States elicited public outcry and a collective call for action. The social justice movement has facilitated energetic discussions about race, sexual orientation, and various issues of diversity, equity, and inclusion. This article discusses issues faced by people of color that we as scientists can address, as well as challenges faced by women and internationally trained scientists in the scientific community that need immediate attention. Moreover, we highlight various ways to resolve such issues at both institutional and individual levels. Silence and incremental solutions are no longer acceptable to achieving lasting social justice and ensure prosperous societies that work for all.

8.
FASEB J ; 36(3): e22177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142393

RESUMEN

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Neovascularización Fisiológica , Carrera , Superóxido Dismutasa/metabolismo , Animales , Células Cultivadas , ATPasas Transportadoras de Cobre/sangre , ATPasas Transportadoras de Cobre/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Ejercicio Físico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Condicionamiento Físico Animal/métodos , Ratas , Superóxido Dismutasa/sangre
9.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35132998

RESUMEN

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/etiología , Receptores Inmunológicos/fisiología , Receptores de Prostaglandina/fisiología , Angiotensina II/farmacología , Animales , Aneurisma de la Aorta Abdominal/prevención & control , Masculino , Ratones , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores
10.
Nat Cell Biol ; 24(1): 35-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35027734

RESUMEN

Vascular endothelial growth factor receptor type 2 (VEGFR2, also known as KDR and FLK1) signalling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species and copper (Cu) are also involved in these processes. However, their inter-relationship is poorly understood. Evidence of the role of the endothelial Cu importer CTR1 (also known as SLC31A1) in VEGFR2 signalling and angiogenesis in vivo is lacking. Here, we show that CTR1 functions as a redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signalling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 at its cytosolic C terminus after stimulation with VEGF, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signalling. In vivo, EC-specific Ctr1-deficient mice or CRISPR-Cas9-generated redox-dead Ctr1(C187A)-knockin mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signalling to enhance angiogenesis. Our study uncovers an important mechanism for sensing reactive oxygen species through CTR1 to drive neovascularization.


Asunto(s)
Transportador de Cobre 1/metabolismo , Cobre/metabolismo , Neovascularización Fisiológica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Bovinos , Línea Celular , Transportador de Cobre 1/genética , Cisteína/metabolismo , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Transducción de Señal/fisiología
11.
Nat Commun ; 12(1): 3091, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035268

RESUMEN

VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) plays a central role in angiogenesis. The P-type ATPase transporter ATP7A regulates copper homeostasis, and its role in VEGFR2 signaling and angiogenesis is entirely unknown. Here, we describe the unexpected crosstalk between the Copper transporter ATP7A, autophagy, and VEGFR2 degradation. The functional significance of this Copper transporter was demonstrated by the finding that inducible EC-specific ATP7A deficient mice or ATP7A-dysfunctional ATP7Amut mice showed impaired post-ischemic neovascularization. In ECs, loss of ATP7A inhibited VEGF-induced VEGFR2 signaling and angiogenic responses, in part by promoting ligand-induced VEGFR2 protein degradation. Mechanistically, VEGF stimulated ATP7A translocation from the trans-Golgi network to the plasma membrane where it bound to VEGFR2, which prevented autophagy-mediated lysosomal VEGFR2 degradation by inhibiting autophagic cargo/adapter p62/SQSTM1 binding to ubiquitinated VEGFR2. Enhanced autophagy flux due to ATP7A dysfunction in vivo was confirmed by autophagy reporter CAG-ATP7Amut -RFP-EGFP-LC3 transgenic mice. In summary, our study uncovers a novel function of ATP7A to limit autophagy-mediated degradation of VEGFR2, thereby promoting VEGFR2 signaling and angiogenesis, which restores perfusion recovery and neovascularization. Thus, endothelial ATP7A is identified as a potential therapeutic target for treatment of ischemic cardiovascular diseases.


Asunto(s)
Autofagia/genética , Vasos Sanguíneos/metabolismo , ATPasas Transportadoras de Cobre/genética , ATPasas Tipo P/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiología , Células COS , Células Cultivadas , Chlorocebus aethiops , ATPasas Transportadoras de Cobre/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , ATPasas Tipo P/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
Antioxid Redox Signal ; 34(16): 1319-1354, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33899493

RESUMEN

Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Homeostasis , Humanos , Redes y Vías Metabólicas , NADP/metabolismo , Transducción de Señal
14.
Front Physiol ; 12: 793251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35264975

RESUMEN

Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.

15.
Am J Physiol Cell Physiol ; 319(5): C933-C944, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936699

RESUMEN

Caveolin-1 (Cav-1) is a scaffolding protein and a major component of caveolae/lipid rafts. Previous reports have shown that endothelial dysfunction in Cav-1-deficient (Cav-1-/-) mice is mediated by elevated oxidative stress through endothelial nitric oxide synthase (eNOS) uncoupling and increased NADPH oxidase. Oxidant stress is the net balance of oxidant generation and scavenging, and the role of Cav-1 as a regulator of antioxidant enzymes in vascular tissue is poorly understood. Extracellular SOD (SOD3) is a copper (Cu)-containing enzyme that is secreted from vascular smooth muscle cells/fibroblasts and subsequently binds to the endothelial cells surface, where it scavenges extracellular [Formula: see text] and preserves endothelial function. SOD3 activity is dependent on Cu, supplied by the Cu transporter ATP7A, but whether Cav-1 regulates the ATP7A-SOD3 axis and its role in oxidative stress-mediated vascular dysfunction has not been studied. Here we show that the activity of SOD3, but not SOD1, was significantly decreased in Cav-1-/- vessels, which was rescued by re-expression of Cav-1 or Cu supplementation. Loss of Cav-1 reduced ATP7A protein, but not mRNA, and this was mediated by ubiquitination of ATP7A and proteasomal degradation. ATP7A bound to Cav-1 and was colocalized with SOD3 in caveolae/lipid rafts or perinucleus in vascular tissues or cells. Impaired endothelium-dependent vasorelaxation in Cav-1-/- mice was rescued by gene transfer of SOD3 or by ATP7A-overexpressing transgenic mice. These data reveal an unexpected role of Cav-1 in stabilizing ATP7A protein expression by preventing its ubiquitination and proteasomal degradation, thereby increasing SOD3 activity, which in turn protects against vascular oxidative stress-mediated endothelial dysfunction.


Asunto(s)
Caveolina 1/genética , ATPasas Transportadoras de Cobre/genética , Células Endoteliales/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa/genética , Animales , Aorta/citología , Aorta/metabolismo , Caveolina 1/deficiencia , Cobre/farmacología , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Masculino , Arterias Mesentéricas/citología , Arterias Mesentéricas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrés Oxidativo , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Ubiquitinación/efectos de los fármacos , Vasodilatación/efectos de los fármacos
16.
Cells ; 9(8)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781794

RESUMEN

Angiogenesis, a new vessel formation from the pre-existing ones, is essential for embryonic development, wound repair and treatment of ischemic heart and limb diseases. However, dysregulated angiogenesis contributes to various pathologies such as diabetic retinopathy, atherosclerosis and cancer. Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) as well as mitochondria play an important role in promoting the angiogenic switch from quiescent endothelial cells (ECs). However, how highly diffusible ROS produced from different sources and location can communicate with each other to regulate angiogenesis remains unclear. To detect a localized ROS signal in distinct subcellular compartments in real time in situ, compartment-specific genetically encoded redox-sensitive fluorescence biosensors have been developed. Recently, the intercellular communication, "cross-talk", between ROS derived from NOX and mitochondria, termed "ROS-induced ROS release", has been proposed as a mechanism for ROS amplification at distinct subcellular compartments, which are essential for activation of redox signaling. This "ROS-induced ROS release" may represent a feed-forward mechanism of localized ROS production to maintain sustained signaling, which can be targeted under pathological conditions with oxidative stress or enhanced to promote therapeutic angiogenesis. In this review, we summarize the recent knowledge regarding the role of the cross-talk between NOX and mitochondria organizing the sustained ROS signaling involved in VEGF signaling, neovascularization and tissue repair.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/patología , Humanos , Neovascularización Patológica , Neovascularización Fisiológica , Oxidación-Reducción , Estrés Oxidativo
17.
FASEB J ; 34(1): 540-554, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914585

RESUMEN

A costimulatory signal from the tumor necrosis factor receptor (TNFR) family molecule OX40 (CD134), which is induced on activated T cells, is important for T-cell immunity. Aberrant OX40 cosignaling has been implicated in autoimmune and inflammatory disorders. However, the molecular mechanism by which the OX40 cosignaling regulates the T-cell response remains obscure. We found that OX40 associated with a scaffold protein, IQ motif-containing GTPase-activating protein 1 (IQGAP1) after ligation by its ligand OX40L. Naïve CD4+ T cells from Iqgap1-/- mice displayed enhanced proliferation and cytokine secretion upon receiving OX40 cosignaling. A C-terminal IQGAP1 region was responsible for its association with OX40, and TNFR-associated factor 2 (TRAF2) bridged these two proteins. The enhanced cytokine response in Iqgap1-/- T cells was restored by the expression of the C-terminal IQGAP1. Thus, the IQGAP1 binding limits the OX40 cosignaling. Disease severity of experimental autoimmune encephalomyelitis (EAE) was significantly exacerbated in Iqgap1-/- mice as compared to wild-type mice. Additionally, recipient mice with Iqgap1-/- donor CD4+ T cells exhibited significantly higher EAE scores than those with their wild-type counterparts, and OX40 blockade led to a significant reduction in the EAE severity. Thus, our study defines an important component of the OX40 cosignaling that restricts inflammation driven by antigen-activated T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Receptores OX40/metabolismo , Proteínas Activadoras de ras GTPasa/fisiología , Animales , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores OX40/genética , Transducción de Señal
18.
PLoS One ; 15(1): e0227916, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31961892

RESUMEN

BACKGROUND: Colorectal cancer remains a deadly cancer due to metastatic disease. To understand the molecular mechanisms of metastasis in colon cancer, we investigated whether the copper chaperone antioxidant-1 (Atox1) protein plays a role in this process. Recent findings indicate that Atox1 protein has transcription factor activities and plays a vital role in cell proliferation in cancer cells. However, the role of Atox1 in metastasis has not been examined. METHODS: Atox1 expression was determined by immunofluorescence in a tissue microarray generated from a spectrum of CRC patients. Subcellular fractionation of colon cancer cell lines SW480 and SW620 cells was used to examine the cellular location of Atox1 in the face of activin A, a cytokine that stimulates colon cancer metastasis. Atox1 expression was genetically manipulated and cellular migration measured through trans-well assay and proliferation measured by colony formation assays. RESULTS: Here we demonstrate that in patients with metastatic colon cancer, there is a significant increase in the expression of nuclear Atox1. Interestingly, the metastatic CRC cell line SW620 has increased nuclear localization of Atox1 compared to its related non-metastatic cell line SW480. Further, inhibition of endogenous Atox1 by siRNA in SW620 decreased colony formation and reactive oxygen species generation via decreased expression of Atox1 targets cyclin D1 and NADPH oxidase subunit p47 phox, respectively. Additionally, overexpression of nuclear-targeted but not copper binding domain-mutated Atox1 in SW480 cells increased colony formation and cell migration that was further augmented by activin A stimulation, a known enhancer of colon cancer metastasis. CONCLUSIONS: Our findings suggest that nuclear Atox1 might be a new therapeutic target as well as a new biomarker for metastatic colorectal cancer.


Asunto(s)
Activinas/metabolismo , Carcinoma , Movimiento Celular , Neoplasias del Colon , Proteínas Transportadoras de Cobre/fisiología , Chaperonas Moleculares/fisiología , Carcinoma/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos
19.
Int Immunol ; 32(4): 233-241, 2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-31819988

RESUMEN

Group 2 innate lymphoid cells (ILC2s) play critical roles in type 2 immunity and are crucial for pathogenesis of various types of inflammatory disease. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein that is involved in multiple cellular functions such as cell survival and trafficking. While the roles for IQGAP1 in T and B lymphocytes have been uncovered, the physiological significance of IQGAP1 in innate lymphocytes remains to be elucidated. In the current study, we demonstrate that using bone marrow chimeras, the deficiency of IQGAP1 caused an impaired survival of lung ILC2s in a cell-intrinsic manner and that Iqgap1-/- mice displayed decreased accumulation of ILC2s after administration of papain and thereby reduced the pathology of the disease. Moreover, Iqgap1-/- ILC2s showed a significantly enhanced apoptosis as compared to wild-type ILC2s under both steady-state and inflammatory conditions. Together these results identify for the first time that IQGAP1 is essential for homeostasis of ILC2s in the lung.


Asunto(s)
Pulmón/inmunología , Linfocitos/inmunología , Proteínas Activadoras de ras GTPasa/inmunología , Animales , Homeostasis/inmunología , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Activadoras de ras GTPasa/deficiencia
20.
Arterioscler Thromb Vasc Biol ; 39(11): 2320-2337, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31554420

RESUMEN

OBJECTIVE: Copper (Cu) is essential micronutrient, and its dysregulation is implicated in aortic aneurysm (AA) development. The Cu exporter ATP7A (copper-transporting P-type ATPase/Menkes ATPase) delivers Cu via the Cu chaperone Atox1 (antioxidant 1) to secretory Cu enzymes, such as lysyl oxidase, and excludes excess Cu. Lysyl oxidase is shown to protect against AA formation. However, the role and mechanism of ATP7A in AA pathogenesis remain unknown. Approach and Results: Here, we show that Cu chelator markedly inhibited Ang II (angiotensin II)-induced abdominal AA (AAA) in which ATP7A expression was markedly downregulated. Transgenic ATP7A overexpression prevented Ang II-induced AAA formation. Conversely, Cu transport dysfunctional ATP7Amut/+/ApoE-/- mice exhibited robust AAA formation and dissection, excess aortic Cu accumulation as assessed by X-ray fluorescence microscopy, and reduced lysyl oxidase activity. In contrast, AAA formation was not observed in Atox1-/-/ApoE-/- mice, suggesting that decreased lysyl oxidase activity, which depends on both ATP7A and Atox1, was not sufficient to develop AAA. Bone marrow transplantation suggested importance of ATP7A in vascular cells, not bone marrow cells, in AAA development. MicroRNA (miR) array identified miR-125b as a highly upregulated miR in AAA from ATP7Amut/+/ApoE-/- mice. Furthermore, miR-125b target genes (histone methyltransferase Suv39h1 and the NF-κB negative regulator TNFAIP3 [tumor necrosis factor alpha induced protein 3]) were downregulated, which resulted in increased proinflammatory cytokine expression, aortic macrophage recruitment, MMP (matrix metalloproteinase)-2/9 activity, elastin fragmentation, and vascular smooth muscle cell loss in ATP7Amut/+/ApoE-/- mice and reversed by locked nucleic acid-anti-miR-125b infusion. CONCLUSIONS: ATP7A downregulation/dysfunction promotes AAA formation via upregulating miR-125b, which augments proinflammatory signaling in a Cu-dependent manner. Thus, ATP7A is a potential therapeutic target for inflammatory vascular disease.


Asunto(s)
Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/fisiopatología , ATPasas Transportadoras de Cobre/fisiología , MicroARNs/fisiología , Angiotensina II/efectos de los fármacos , Animales , Apoptosis , Células Cultivadas , Quelantes/farmacología , Cobre/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Inflamación/genética , Inflamación/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Molibdeno/farmacología , Músculo Liso Vascular/citología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...