Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562882

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cell fate in developmental systems. However, identifying the molecular hallmarks of potency - the capacity of a cell to differentiate into other cell types - has remained challenging. Here, we introduce CytoTRACE 2, an interpretable deep learning framework for characterizing potency and differentiation states on an absolute scale from scRNA-seq data. Across 31 human and mouse scRNA-seq datasets encompassing 28 tissue types, CytoTRACE 2 outperformed existing methods for recovering experimentally determined potency levels and differentiation states covering the entire range of cellular ontogeny. Moreover, it reconstructed the temporal hierarchy of mouse embryogenesis across 62 timepoints; identified pan-tissue expression programs that discriminate major potency levels; and facilitated discovery of cellular phenotypes in cancer linked to survival and immunotherapy resistance. Our results illuminate a fundamental feature of cell biology and provide a broadly applicable platform for delineating single-cell differentiation landscapes in health and disease.

2.
NPJ Precis Oncol ; 7(1): 105, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857854

RESUMEN

Numerous cell states are known to comprise the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME). However, the developmental stemness and co-occurrence of these cell states remain poorly defined. Here, we performed single-cell RNA sequencing (scRNA-seq) on a cohort of treatment-naive PDAC time-of-diagnosis endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) samples (n = 25). We then combined these samples with surgical resection (n = 6) and publicly available samples to increase statistical power (n = 80). Following annotation into 25 distinct cell states, cells were scored for developmental stemness, and a customized version of the Ecotyper tool was used to identify communities of co-occurring cell states in bulk RNA-seq samples (n = 268). We discovered a tumor microenvironmental community comprised of aggressive basal-like malignant cells, tumor-promoting SPP1+ macrophages, and myofibroblastic cancer-associated fibroblasts associated with especially poor prognosis. We also found a developmental stemness continuum with implications for survival that is present in both malignant cells and cancer-associated fibroblasts (CAFs). We further demonstrated that high-dimensional analyses predictive of survival are feasible using standard-of-care, time-of-diagnosis EUS-FNB specimens. In summary, we identified tumor microenvironmental and developmental stemness characteristics from a high-dimensional gene expression analysis of PDAC using human tissue specimens, including time-of-diagnosis EUS-FNB samples. These reveal new connections between tumor microenvironmental composition, CAF and malignant cell stemness, and patient survival that could lead to better upfront risk stratification and more personalized upfront clinical decision-making.

3.
Immunol Rev ; 318(1): 96-109, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37491734

RESUMEN

Immune-related toxicities, otherwise known as immune-related adverse events (irAEs), occur in a substantial fraction of cancer patients treated with immune checkpoint inhibitors (ICIs). Ranging from asymptomatic to life-threatening, ICI-induced irAEs can result in hospital admission, high-dose corticosteroid treatment, ICI discontinuation, and in some cases, death. A deeper understanding of the factors underpinning severe irAE development will be essential for improved irAE prediction and prevention, toward maximizing the benefits and safety profiles of ICIs. In recent work, we applied mass cytometry, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing, and bulk T-cell receptor (TCR) sequencing to identify pretreatment determinants of severe irAE development in patients with advanced melanoma. Across 71 patients separated into three cohorts, we found that two baseline features in circulation-elevated activated CD4 effector memory T-cell abundance and TCR diversity-are associated with severe irAE development, independent of the affected organ system within 3 months of ICI treatment initiation. Here, we provide an extended perspective on this work, synthesize and discuss related literature, and summarize practical considerations for clinical translation. Collectively, these findings lay a foundation for data-driven and mechanistic insights into irAE development, with the potential to reduce ICI morbidity and mortality in the future.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Linfocitos T CD4-Positivos , Neoplasias/tratamiento farmacológico
4.
Nat Med ; 28(2): 353-362, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35027754

RESUMEN

Severe immune-related adverse events (irAEs) occur in up to 60% of patients with melanoma treated with immune checkpoint inhibitors (ICIs). However, it is unknown whether a common baseline immunological state precedes irAE development. Here we applied mass cytometry by time of flight, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing and bulk T cell receptor (TCR) sequencing to study peripheral blood samples from patients with melanoma treated with anti-PD-1 monotherapy or anti-PD-1 and anti-CTLA-4 combination ICIs. By analyzing 93 pre- and early on-ICI blood samples and 3 patient cohorts (n = 27, 26 and 18), we found that 2 pretreatment factors in circulation-activated CD4 memory T cell abundance and TCR diversity-are associated with severe irAE development regardless of organ system involvement. We also explored on-treatment changes in TCR clonality among patients receiving combination therapy and linked our findings to the severity and timing of irAE onset. These results demonstrate circulating T cell characteristics associated with ICI-induced toxicity, with implications for improved diagnostics and clinical management.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Melanoma/tratamiento farmacológico , Estudios Retrospectivos , Linfocitos T
5.
Artículo en Inglés | MEDLINE | ID: mdl-34250420

RESUMEN

We hypothesized that circulating tumor DNA (ctDNA) molecular residual disease (MRD) analysis without prior mutational knowledge could be performed after neoadjuvant chemotherapy to assess oligometastatic colorectal cancer (CRC) treated surgically with curative intent. We also investigated urine as an alternative analyte for ctDNA MRD detection in this nongenitourinary setting. PATIENTS AND METHODS: We applied AVENIO targeted next-generation sequencing to plasma, tumor, and urine samples acquired on the day of curative-intent surgery from 24 prospectively enrolled patients with oligometastatic CRC. Age-related clonal hematopoiesis was accounted for by removing variants also present in white blood cells. Plasma and urine ctDNA MRD were correlated with tumor cells detected in the surgical specimen, and adjuvant treatment strategies were proposed based on ctDNA-inferred tumor mutational burden (iTMB) and targetable alterations. RESULTS: Seventy-one percent of patients were treated with neoadjuvant chemotherapy. Tumor-naive plasma ctDNA analysis detected MRD at a median level of 0.62% with 95% sensitivity and 100% specificity, and 94% and 77% sensitivity when only considering patients treated with neoadjuvant chemotherapy and putative driver mutations, respectively. In urine, ctDNA MRD detection specificity remained high at 100%, but sensitivity decreased to 64% with median levels being 11-fold lower than in plasma (P < .0001). Personalized ctDNA MRD oncogenomic analysis revealed 81% of patients might have been candidates for adjuvant immunotherapy based on high iTMB or targeted therapy based on actionable PIK3CA mutations. CONCLUSION: Tumor-naive plasma ctDNA analysis can sensitively and specifically detect MRD in patients with oligometastatic CRC after neoadjuvant chemotherapy. Urine-based ctDNA MRD detection is also feasible; however, it is less sensitive than plasma because of significantly lower levels. Oligometastatic patients with detectable MRD may benefit from additional personalized treatment based on ctDNA-derived oncogenomic profiling.


Asunto(s)
ADN Tumoral Circulante/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/orina , Neoplasia Residual/sangre , Neoplasia Residual/genética , Neoplasias Colorrectales/tratamiento farmacológico , Correlación de Datos , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Metástasis de la Neoplasia
6.
Nat Commun ; 10(1): 4626, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604923

RESUMEN

Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes.


Asunto(s)
Infertilidad/genética , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor/genética , Factores de Edad , Animales , Complemento C3/metabolismo , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/patología , Menopausia/genética , Ratones Noqueados , Mutación , Ovario/patología , Maduración Sexual , Testículo/metabolismo
7.
Mol Diagn Ther ; 23(3): 311-331, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30941670

RESUMEN

Circulating tumor DNA (ctDNA) is a component of cell-free DNA that is shed by malignant tumors into the bloodstream and other bodily fluids. Levels of ctDNA are typically low, particularly in patients with localized disease, requiring highly sophisticated methods for detection and quantification. Multiple liquid biopsy methods have been developed for ctDNA analysis in solid tumor malignancies and are now enabling detection and assessment of earlier stages of disease, post-treatment molecular residual disease (MRD), resistance to targeted systemic therapy, and tumor mutational burden. Understanding ctDNA biology, mechanisms of release, and clearance and size characteristics, in conjunction with the application of molecular barcoding and targeted error correction, have increased the sensitivity and specificity of ctDNA detection techniques. Combinatorial approaches including integration of ctDNA data with circulating protein biomarkers may further improve assay sensitivity and broaden the scope of ctDNA applications. Circulating viral DNA may be utilized to monitor disease in some virally induced malignancies. In spite of increasingly accurate methods of ctDNA detection, results need to be interpreted with caution given that somatic mosaicisms such as clonal hematopoiesis of indeterminate potential (CHIP) may give rise to genetic variants in the bloodstream unrelated to solid tumors, and the limited concordance observed between different commercial platforms. Overall, highly precise ctDNA detection and quantification methods have the potential to transform clinical practice via non-invasive monitoring of solid tumor malignancies, residual disease detection at earlier timepoints than standard clinical and/or imaging surveillance, and treatment personalization based on real-time assessment of the tumor genomic landscape.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasias/diagnóstico , Neoplasias/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida , Técnicas de Diagnóstico Molecular , Neoplasia Residual/sangre , Neoplasias/sangre
8.
Cell Tissue Res ; 371(2): 351-363, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29064078

RESUMEN

Testicular Sertoli cells make a niche for the division and differentiation of germ cells. Sertoli cells respond to increased follicle-stimulating hormone (FSH) and testosterone (T) levels at the onset of puberty by producing paracrine factors which affect germ cells and trigger robust onset of spermatogenesis. Such paracrine support to germ cells is absent during infancy, despite Sertoli cells being exposed to high FSH and T within the infant testis. This situation is similar to certain cases of male idiopathic infertility where post-pubertal Sertoli cells fail to support germ cell division and differentiation in spite of endogenous or exogenous hormonal support. Defective Sertoli cells in such individuals may fail to express the full complement of their paracrine repertoire. Identification and supplementation with such factors may overcome Sertoli cells deficiencies and help trigger quantitatively and qualitatively normal differentiation of germ cells. To this end, we compared the transcriptome of FSH- and T-treated infant and pubertal monkey Sertoli cells by DNA microarray. Expression of Wnt3, a morphogen of the Wnt/ß-catenin pathway, was higher in pubertal Sertoli cells relative to infant Sertoli cells. Transgenic mice were generated by us in which Wnt3 expression was curtailed specifically in post-pubertal Sertoli cells by shRNA. Subfertility and oligozoospermia were noticed in such animals with low Wnt3 expression in post-pubertal Sertoli cells along with diminished expression of Connexin43, a gap-junctional molecule essential for germ cell development. We report that the FSH- and T-targetedf Wnt3 governs Sertoli cell-mediated regulation of spermatogenesis and hence is crucial for fertility.


Asunto(s)
Fertilidad , Células de Sertoli/metabolismo , Testículo/patología , Proteína Wnt3/metabolismo , Animales , Células Cultivadas , Conexina 43/metabolismo , Técnicas de Silenciamiento del Gen , Haplorrinos , Masculino , Ratones Transgénicos , Células de Sertoli/patología , Vía de Señalización Wnt
9.
J Vis Exp ; (125)2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28745623

RESUMEN

Fluorescence-activated cell sorting (FACS) has been one of the methods of choice to isolate enriched populations of mammalian testicular germ cells. Currently, it allows the discrimination of up to 9 murine germ cell populations with high yield and purity. This high-resolution in discrimination and purification is possible due to unique changes in chromatin structure and quantity throughout spermatogenesis. These patterns can be captured by flow cytometry of male germ cells stained with fluorescent DNA-binding dyes such as Hoechst-33342 (Hoechst). Herein is a detailed description of a recently developed protocol to isolate mammalian testicular germ cells. Briefly, single cell suspensions are generated from testicular tissue by mechanical dissociation, double stained with Hoechst and propidium iodide (PI) and processed by flow cytometry. A serial gating strategy, including the selection of live cells (PI negative) with different DNA content (Hoechst intensity), is used during FACS sorting to discriminate up to 5 germ cell types. These include, with corresponding average purities (determined by microscopy evaluation): spermatogonia (66%), primary (71%) and secondary (85%) spermatocytes, and spermatids (90%), further separated into round (93%) and elongating (87%) subpopulations. Execution of the entire workflow is straightforward, allows the isolation of 4 cell types simultaneously with the appropriate FACS machine, and can be performed in less than 2 h. As reduced processing time is crucial to preserve the physiology of ex vivo cells, this method is ideal for downstream high-throughput studies of male germ cell biology. Moreover, a standardized protocol for multispecies purification of mammalian germ cells eliminates methodological sources of variables and allows a single set of reagents to be used for different animal models.


Asunto(s)
Citometría de Flujo/métodos , Células Germinativas/metabolismo , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Células Germinativas/citología , Masculino , Ratones , Espermatogonias/citología , Testículo/citología
10.
PLoS One ; 12(1): e0169809, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072841

RESUMEN

Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic ß-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17µM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.


Asunto(s)
Complejos de Coordinación/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Receptor de Insulina/agonistas , Compuestos de Vanadio/uso terapéutico , Células 3T3 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Complejos de Coordinación/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Ácidos Grasos/sangre , Femenino , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Unión Proteica , Receptor de Insulina/metabolismo , Triglicéridos/sangre , Compuestos de Vanadio/síntesis química , Compuestos de Vanadio/farmacología , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
11.
G3 (Bethesda) ; 7(1): 247-255, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27856695

RESUMEN

Spermatozoa are one of the few mammalian cell types that cannot be fully derived in vitro, severely limiting the application of modern genomic techniques to study germ cell biology. The current gold standard approach of characterizing single-gene knockout mice is slow as generation of each mutant line can take 6-9 months. Here, we describe an in vivo approach to rapid functional screening of germline genes based on a new nonsurgical, nonviral in vivo transfection method to deliver nucleic acids into testicular germ cells. By coupling multiplex transfection of short hairpin RNA (shRNA) constructs with pooled amplicon sequencing as a readout, we were able to screen many genes for spermatogenesis function in a quick and inexpensive experiment. We transfected nine mouse testes with a pilot pool of RNA interference (RNAi) against well-characterized genes to show that this system is highly reproducible and accurate. With a false negative rate of 18% and a false positive rate of 12%, this method has similar performance as other RNAi screens in the well-described Drosophila model system. In a separate experiment, we screened 26 uncharacterized genes computationally predicted to be essential for spermatogenesis and found numerous candidates for follow-up studies. Finally, as a control experiment, we performed a long-term selection screen in neuronal N2a cells, sampling shRNA frequencies at five sequential time points. By characterizing the effect of both libraries on N2a cells, we show that our screening results from testis are tissue-specific. Our calculations indicate that the current implementation of this approach could be used to screen thousands of protein-coding genes simultaneously in a single mouse testis. The experimental protocols and analysis scripts provided will enable other groups to use this procedure to study diverse aspects of germ cell biology ranging from epigenetics to cell physiology. This approach also has great promise as an applied tool for validating diagnoses made from medical genome sequencing, or designing synthetic biological sequences that can act as potent and highly specific male contraceptives.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/genética , Espermatogénesis/genética , Transfección/métodos , Animales , Técnicas de Inactivación de Genes/métodos , Genoma , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Reproducción/genética , Espermatozoides/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Testículo/metabolismo
12.
Mol Ther Methods Clin Dev ; 3: 16076, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27933305

RESUMEN

Our ability to decipher gene sequences has increased enormously with the advent of modern sequencing tools, but the ability to divulge functions of new genes have not increased correspondingly. This has caused a remarkable delay in functional interpretation of several newly found genes in tissue and age specific manner, limiting the pace of biological research. This is mainly due to lack of advancements in methodological tools for transgenesis. Predominantly practiced method of transgenesis by pronuclear DNA-microinjection is time consuming, tedious, and requires highly skilled persons for embryo-manipulation. Testicular electroporation mediated transgenesis requires use of electric current to testis. To this end, we have now developed an innovative technique for making transgenic mice by giving hypotonic shock to male germ cells for the gene delivery. Desired transgene was suspended in hypotonic Tris-HCl solution (pH 7.0) and simply injected in testis. This resulted in internalization of the transgene in dividing germ-cells residing at basal compartment of tubules leading to its integration in native genome of mice. Such males generated transgenic progeny by natural mating. Several transgenic animals can be generated with minimum skill within short span of time by this easily adaptable novel technique.

13.
Stem Cell Res Ther ; 7(1): 142, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27659063

RESUMEN

BACKGROUND: Spermatogonial stem cell (SSC) transplantation (SSCT) has become important for conservation of endangered species, transgenesis and for rejuvenating testes which have lost germ cells (Gc) due to gonadotoxic chemotherapy or radiotherapy during the prepubertal phase of life. Creating a germ cell-depleted animal model for transplantation of normal or gene-transfected SSC is a prerequisite for such experimental studies. Traditionally used intraperitoneal injections of busulfan to achieve this are associated with painful hematopoietic toxicity and affects the wellbeing of the animals. Use of testicular busulfan has been reported recently to avoid this but with a very low success rate of SSCT. Therefore, it is necessary to establish a more efficient method to achieve higher SSCT without any suffering or mortality of the animals. METHODS: A solution of busulfan, ranging from 25 µg/20 µl to 100 µg/20 µl in 50 % DMSO was used for this study. Each testis received two diagonally opposite injections of 10 µl each. Only DMSO was used as control. Germ cell depletion was checked every 15 days. GFP-expressing SSC from transgenic donor mice C57BL/6-Tg (UBC-GFP) 30Scha/J were transplanted into busulfan-treated testis. Two months after SSCT, mice were analyzed for presence of colonies of donor-derived SSC and their ability to generate offspring. RESULTS: A dose of 75 µg of busulfan resulted in reduction of testis size and depletion of the majority of Gc of testis in all mice within 15 days post injection without causing mortality or a cytotoxic effect in other organs. Two months after SSCT, colonies of donor-derived Gc-expressing GFP were observed in recipient testes. When cohabitated with females, donor-derived offspring were obtained. By our method, 71 % of transplanted males sired transgenic progeny as opposed to 5.5 % by previously described procedures. About 56 % of progeny born were transgenic by our method as opposed to 1.2 % by the previously reported methods. CONCLUSIONS: We have established an efficient method of generating a germ cell-depleted animal model by using a lower dose of busulfan, injected through two diagonally opposite sites in the testis, which allows efficient colonization of transplanted SSC resulting in a remarkably higher proportion of donor-derived offspring generation.

14.
Biol Reprod ; 95(4): 85, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27557646

RESUMEN

Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of 9 germ cell types. This staining technique is straightforward to implement, highly effective at purifying specific germ cell types and yields sufficient cell numbers for high throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, due to the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to 4 mammalian species that are widely used in testis research - Rattus norvegicus, Cavia porcellus, Canis familiaris and Sus scrofa domesticus We successfully isolated 4 germ cell populations from these species with average purity of 79% for spermatocytes, and 90% for spermatids and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.

15.
J Biotechnol ; 198: 53-9, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25678138

RESUMEN

Therapeutic proteins are produced in microbes, mammalian cell lines, and body fluids by applying recombinant DNA technology. They are required for compensating the deficiency of essential proteins in patients. Animal bioreactors producing such valuable bio-pharmaceuticals in body fluids have lately emerged as efficient and cost-effective expression systems. Promoters, along with other regulatory elements of genes coding for milk proteins, have been cloned from few species for directing the expression of desired proteins in the milk of farm animals. However, buffaloes, which are the second largest source of milk production in the world, have remained unexplored for such use. Since mammary epithelial cell-specific ß-casein is the most abundantly expressed protein found in buffalo milk, we have isolated the promoter region and the transcriptional regulatory element along with exon 1, Intron 1 and partial exon 2 of the ß-casein gene from the genome of the Indian river buffalo (Bubalus bubalis) and have characterized the same (GenBank accession no. KF612339). Mammary epithelial cells of buffalo and human (MCF7) expressed Enhanced green fluorescent protein (EGFP) upon transfection with the construct where egfp was cloned under the ß-casein promoter. Transfected HEK-293 cells failed to express EGFP. Transgenic female mice generated using this construct expressed EGFP in the milk gland during lactation, without leaky expression in any other organs. This promoter also drove expression of recombinant human Interferonγ suggesting its use for expressing recombinant bio-pharmaceuticals in the milk of buffalo or other farm animals. Additionally, this may also allow breast gland-specific gene expression for remediation of breast gland-associated diseases.


Asunto(s)
Búfalos/genética , Caseínas/genética , Células Epiteliales/metabolismo , Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Animales , Animales Domésticos/genética , Animales Domésticos/metabolismo , Búfalos/metabolismo , Caseínas/metabolismo , Línea Celular , Línea Celular Tumoral , Exones/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Intrones/genética , Lactancia/genética , Células MCF-7 , Masculino , Ratones , Ratones Transgénicos , Leche/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos Reguladores de la Transcripción/genética , Transfección/métodos
16.
Methods Mol Biol ; 1194: 327-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25064112

RESUMEN

The protocols in this chapter describe two techniques for the generation of transgenic mice by in vivo manipulation of spermatogonial stem cells (SSCs) with a high rate of success. SSCs in prepubescent animals can either be infected in vivo with recombinant lentiviruses expressing the transgene of interest or DNA can be injected into the testis followed by the application of an electric current resulting in integration of the linearized DNA containing a transgene downstream of the appropriate promoter into SSCs. All male pre-founder mice produced transgenic pups using both protocols with the transgene being heritable. Further, the pre-founder mice could be used in multiple mating experiments resulting in the generation of multiple progeny. These protocols could be extended to perform over-expression/knockdown screens in vivo using bar-coded lentiviruses/plasmid constructs, thus permitting the design of genetic screens in the mouse. Further, these protocols could be adapted to achieve transgenesis in other laboratory animals resulting in the generation of model systems that closely approximate human development and disease.


Asunto(s)
Técnicas de Transferencia de Gen , Espermatogonias/citología , Células Madre/metabolismo , Transducción Genética/métodos , Animales , Electroporación , Femenino , Proteínas Fluorescentes Verdes/genética , Humanos , Lentivirus/genética , Lentivirus/fisiología , Masculino , Ratones , Ratones Transgénicos , Células Madre/citología , Células Madre/virología , Testículo/metabolismo , Factores de Tiempo , Transgenes/genética
17.
Sci Rep ; 3: 3430, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24305437

RESUMEN

Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.


Asunto(s)
Técnicas de Transferencia de Gen , Células Germinativas/metabolismo , Transgenes , Animales , Animales Modificados Genéticamente , Electroporación/métodos , Expresión Génica , Genes Reporteros , Masculino , Ratones , Ratones Transgénicos , Testículo/metabolismo
18.
J Reprod Immunol ; 83(1-2): 36-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19880193

RESUMEN

In certain forms of idiopathic infertility, there is failure of follicle stimulating hormone (FSH) and testosterone (T) to initiate spermatogenesis despite the presence of Sertoli cells and germ cells in the testis. In postnatal rats (up to 11 days of age) and infant monkeys (3-4 months old), robust division and differentiation of spermatogonial stem cells is not discerned, even though serum levels of FSH and T are similar to those found during adulthood. Lack of spermatogenesis together with normal hormone levels is a situation similar to that found in certain categories of male infertility. To investigate this intriguing situation, Sertoli cells were cultured from infant and pubertal rats and monkeys and differential gene expression by testicular Sertoli cells was evaluated by DNA microarray using the Agilent microarray system. To determine the role of candidate genes in regulation of spermatogenesis, transgenic animals over-expressing these genes must be generated. However, present techniques for generation of transgenic animals have limited utility for production of several transgenic animals within a short period of time. Therefore, we have developed a technique for making transgenic animals by the testicular route which is less labor intensive and less time consuming. This technique is also ethically superior since fewer mice are required than in existing alternative methods of transgenesis.


Asunto(s)
Animales Modificados Genéticamente , Electroporación , Maduración Sexual/genética , Espermatogénesis/genética , Testículo/metabolismo , Animales , Animales Recién Nacidos , Perfilación de la Expresión Génica , Haplorrinos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Testículo/citología
19.
Liver Int ; 28(6): 856-64, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18346131

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a well-recognized condition that includes a spectrum of clinicopathology conditions ranging from steatotosis to cirrhosis and liver failure. Available animal models are not ideal as they show only a partial resemblance to characteristic human NAFLD. OBJECTIVE: This study was aimed at identifying a nonhuman primate model of NAFLD resembling features of human NAFLD, which will be useful in understanding the mechanism of the onset of this disease and for developing novel therapeutic modalities. METHODS: The histological status of the liver and serum levels of triglycerides (TG), cholesterol, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of aged bonnet monkeys were compared with that of the aged rhesus and adult bonnet monkeys. Histopathology and immunostaining of liver sections and oil red 'O' confirmed NAFLD in aged bonnet monkeys. RESULTS: Aged bonnet monkeys showed a significant (P<0.01) increase in serum TG, AST and ALT compared with aged rhesus and adult bonnet monkeys. Histopathology of the liver of aged bonnet macaques showed diffused microvesicular and macrovesicular fatty changes, perivenular and portal and perisinusoidal fibrosis with fatty degeneration of hepatocytes, and immunostaining of liver sections was suggestive of NAFLD. CONCLUSION: The spontaneous occurrence of NAFLD in normal animals is rare, but aged bonnet monkeys may serve as a unique animal model for studies related to NAFLD because they mimic pathophysiological features of human NAFLD.


Asunto(s)
Modelos Animales de Enfermedad , Hígado Graso/patología , Hígado/patología , Macaca radiata , Enfermedades de los Monos/patología , Animales , Compuestos Azo/análisis , Pruebas de Química Clínica , Colorantes/análisis , Hígado Graso/sangre , Femenino , Hepatocitos/química , Hepatocitos/efectos de los fármacos , Hígado/química , Masculino , Enfermedades de los Monos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...