Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 830: 154791, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35351506

RESUMEN

Sandy soils occur in different regions throughout the world. In spite of poor quality, they are being used in crop production. The use of sandy soils for crop production requires soil-improving cropping systems (SICS). The aim of this study was to determine the spatial relationships of soil properties including intrinsic texture and relatively stable organic carbon, pH(KCl), cation exchange capacity, and cereal yield (grain and straw yields and plant height) in response to random application of SICS using geostatistics and maps. A 4-year field experiment included the following crop rotation: oat, wheat, wheat and oat and SICS: the control (C) and SICS: liming (L), leguminous catch crops for green manure (LU), farmyard manure (M), and farmyard manure+liming+leguminous catch crops together (M + L + LU). The use of the soil properties as auxiliary variables in the cross-semivariograms improved the prediction of the spatial distribution of the cereal yield, compared to the semi-variograms. The cokriging maps showed positional similarity between the cereal yield, the application of some SICS, and soil textural fractions. The application of M and M + L + LU providing the greatest amounts of organic matter and nitrogen was an effective measure in increasing cereal yields in sub-areas with low contents of sand, compared with the C, L, and LU variants. This increase in the yield was most pronounced in the last study year with an adequate rainfall amount and distribution during the growing season. The similar spatial effects of the SICS M and M + L + LU suggest that the application of M can be in part replaced by incorporation of atmospheric nitrogen-fixing legume catch crops and liming with maintenance of the same productivity and nitrogen supply. The spatial interrelations of the yield response, soil texture, and SICS type will help in selection of the most effective SICS in terms of cereal productivity, depending on local soil conditions.


Asunto(s)
Fabaceae , Suelo , Agricultura , Productos Agrícolas/metabolismo , Grano Comestible/química , Fabaceae/metabolismo , Fertilizantes/análisis , Estiércol , Nitrógeno/análisis , Arena
2.
Materials (Basel) ; 14(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34300955

RESUMEN

Soil organic matter is a key resource base for agriculture. However, its content in cultivated soils is low and often decreases. This study aimed at examining the effects of long-term application of chicken manure (CM) and spent mushroom substrate (SMS) on organic matter accumulation, acidity, and hydraulic properties of soil. Two podzol soils with sandy texture in Podlasie Region (Poland) were enriched with recycled CM (10 Mg ha-1) and SMS (20 Mg ha-1), respectively, every 1-2 years for 20 years. The application of CM and SMS increased soil organic matter content at the depths of 0-20, 20-40, and 40-60 cm, especially at 0-20 cm (by 102-201%). The initial soil pH increased in the CM- and SMS-amended soil by 1.7-2.0 units and 1.0-1.2 units, respectively. Soil bulk density at comparable depths increased and decreased following the addition of CM and SMS, respectively. The addition of CM increased field water capacity (at -100 hPa) in the range from 45.8 to 117.8% depending on the depth within the 0-60 cm layer. In the case of the SMS addition, the value of the parameter was in the range of 42.4-48.5% at two depths within 0-40 cm. Depending on the depth, CM reduced the content of transmission pores (>50 µm) in the range from 46.3 to 82.3% and increased the level of residual pores (<0.5 µm) by 91.0-198.6%. SMS increased the content of residual pores at the successive depths by 121.8, 251.0, and 30.3% and decreased or increased the content of transmission and storage pores. Additionally, it significantly reduced the saturated hydraulic conductivity at two depths within 0-40 cm. The fitted unsaturated hydraulic conductivity at two depths within the 0-40 cm layer increased and decreased in the CM- and SMS-amended soils, respectively. The results provide a novel insight into the application of recycled organic materials to sequester soil organic matter and improve crop productivity by increasing soil water retention capacity and decreasing acidity. This is of particular importance in the case of the studied low-productivity sandy acidic soils that have to be used in agriculture due to limited global land resources and rising food demand.

3.
Materials (Basel) ; 14(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801976

RESUMEN

Biochar application has been reported to improve the physical, chemical, and hydrological properties of soil. However, the information about the size fraction composition of the applied biochar as a factor that may have an impact on the properties of soil-biochar mixtures is often underappreciated. Our research shows how sunflower husk biochar (pyrolyzed at 650 °C) can modify the water retention characteristics of arable sandy soil depending on the biochar dose (up to 9.52 wt.%) and particle size (<50 µm, 50-100 µm, 100-250 µm). For comparison, we used soil samples mixed with biochar passed through 2 mm sieve and an unamended reference. The addition of sieved biochar to the soil caused a 30% increase in the available water content (AWC) in comparing to the soil without biochar. However, the most notable improvement (doubling the reference AWC value from 0.078 m3 m-3 to 0.157 m3 m-3) was observed at the lowest doses of biochar (0.95 and 2.24 wt.%) and for the finest size fractions (below 100 µm). The water retention effects on sandy soil are explained as the interplay between the dose, the size of biochar particles, and the porous properties of biochar fractions.

4.
Sci Rep ; 11(1): 8293, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859221

RESUMEN

Saturated hydraulic conductivity (K) is a key property for evaluating soil water movement and quality. Most studies on spatial variability of K have been performed soil at a field or smaller scale. Therefore, the aim of this work was to assess (quantify) the spatial distribution of K at the larger regional scale in south-eastern Poland and its relationship with other soil properties, including intrinsic sand, silt, and clay contents, relatively stable organic carbon, cation exchange capacity (CEC) and temporally variable water content (WC), total porosity (FI), and dry bulk density (BD) in the surface layer (0-20 cm). The spatial relationships were assessed using a semivariogram and a cross-semivariogram. The studied region (140 km2) with predominantly permeable sandy soils with low fertility and productivity is located in the south-eastern part of Poland (Podlasie region). The mean sand and organic carbon contents are 74 and 0.86 and their ranges (in %) are 45-95 and 0.002-3.75, respectively. The number of individual samples varied from 216 to 228 (for K, WC, BD, FI) to 691 for the other soil properties. The best fitting models were adjusted to the empirical semivariogram (exponential) and the cross-semivariogram (exponential, Gaussian, or linear) used to draw maps with kriging. The results showed that, among the soil properties studied, K was most variable (coefficient of variation 77.3%) and significantly (p < 0.05) positively correlated with total porosity (r = 0.300) and negatively correlated with soil bulk density (r = - 0.283). The normal or close to the normal distribution was obtained by natural logarithmic and root square transformations. The mean K was 2.597 m day-1 and ranged from 0.01 up to 11.54 m day-1. The spatial autocorrelation (range) of K in the single (direct) semivariograms was 0.081° (8.1 km), while it favourably increased up to 0.149°-0.81° (14.9-81 km) in the cross-semivariograms using the OC contents, textural fractions, and CEC as auxiliary variables. The generated spatial maps allowed outlining two sub-areas with predominantly high K above 3.0 m day-1 in the northern sandier (sand content > 74%) and less silty (silt content < 22%) part and, with lower K in the southern part of the study region. Generally, the spatial distribution of the K values in the study region depended on the share of individual intrinsic textural fractions. On the other hand, the ranges of the spatial relationship between K and the intrinsic and relatively stable soil properties were much larger (from ~ 15 to 81 km) than between K and the temporally variable soil properties (0.3-0.9 km). This knowledge is supportive for making decisions related to land management aimed at alteration of hydraulic conductivity to improve soil water resources and crop productivity and reduce chemical leaching.

5.
Sci Rep ; 10(1): 18330, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110156

RESUMEN

The assessment of water resources in soil is important in understanding the water cycle in the natural environment and the processes of water exchange between the soil and the atmosphere. The main objective of the study was to assess water resources (in 2010-2013) in the topsoil from satellite (SMOS) and in situ (ground) measurements using the SWEX_PD approach (Soil Water EXtent at Penetration Depth). The SWEX_PD is a result of multiplying soil moisture (SM) and radiation penetration depth (PD) for each pixel derived from the SMOS satellite. The PD, being a manifold of the wavelength λ0 equal to 21 cm, was determined from the weekly SMOS L2 measurement data based on the real and imaginary part of complex dielectric constant. The SWEX_PD data were compared with soil water resources (WR) calculated from the sum of components derived from multiplication of soil moisture (SM) and layer thickness in nine agrometeorological stations located along the eastern border of Poland. Each study site consisted of seven neighbouring Discrete Global Grid pixels (nodes spaced at 15 km) including the central ones with agrometeorological stations. The study area included different types of soils and land covers. The agreement between the water resources obtained from the SWEX_PD and ground measurements (WR) was quantified using classical statistics and Bland-Altman's plots. Calibrated Layer Thickness (CLT = dbias) from 8 to 28 cm was obtained with a low values of bias (close to zero), limits of agreements, and confidence intervals for all the SWEX_PD, depending on the pixel location. The results revealed that the use of the SWEX_PD for assessing soil water resources is the most reliable approach in the study area. Additionally, the data from Bland-Altman plots and the equation proposed in these studies allowed calculation of the Equivalent Layer Thickness (ELT = [Formula: see text]), which corresponds to the water resources derived from the SMOS satellite at the same time as (SM) measurements performed in the agrometeorological stations. The ranges of the mean, standard deviation, minimum, maximum, and coefficient of variation (CV) of ELT among all pixels and stations were 8.28-28.7 cm, 3.27-12.66 cm, 3.03-10.87 cm, 19.23-94.97 cm, and 24.72-98.79%, respectively. The ranges of the characteristics depended on environmental conditions and their means were close to the values of the calibrated layer thickness. The impacts of soil texture, organic matter, vegetation, and their interactive effects on the differentiation and agreement of soil water resources obtained from SWEX_PD vs. data from ground measurements in the study area are discussed. Further studies are required to address the impact of the environmental factors to improve the assessment of soil water resources based on satellite SM products (retrievals).

6.
PeerJ ; 8: e9501, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32953254

RESUMEN

BACKGROUND: Land use change significantly alters soil organic carbon content and the microbial community. Therefore, in the present study, the effect of changing cropland to grassland on structural and functional soil microbial diversity was evaluated. The specific aims were (i) to identify the most prominent members of the fungal communities and their relevant ecological guild groups; (ii) to assess changes in the diversity of ammonia-oxidizing archaea; (iii) to determine the relationships between microbial diversity and selected physical and chemical properties. METHODS: We investigated microbial diversity and activity indicators, bulk density and the water-holding capacity of sandy soil under both cropland and 25-year-old grassland (formerly cropland) in Trzebieszów, in the Podlasie Region, Poland. Microbial diversity was assessed by: the relative abundance of ammonia-oxidizing archaea, fungal community composition and functional diversity. Microbial activity was assessed by soil enzyme (dehydrogenase, ß-glucosidase) and respiration tests. RESULTS: It was shown that compared to cropland, grassland has a higher soil organic carbon content, microbial biomass, basal respiration, rate of enzyme activity, richness and diversity of the microbial community, water holding capacity and the structure of the fungal and ammonia-oxidizing archaea communities was also altered. The implications of these results for soil quality and soil health are also discussed. The results suggest that grassland can have a significant phytosanitary capacity with regard to ecosystem services, due to the prominent presence of beneficial and antagonistic microbes. Moreover, the results also suggest that grassland use may improve the status of soil organic carbon and nitrogen dynamics, thereby increasing the relative abundance of fungi and ammonia-oxidizing archaea.

7.
Sci Rep ; 9(1): 19883, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882628

RESUMEN

Knowledge on spatial distribution of crop yield in relation to fixed soil fertilisation with exogenous organic materials is essential for improving precise crop and soil management practices within a field. This study assessed the effect of various application rates and types of exogenous (recycled) organic materials (EOMs) containing different organic matter and nitrogen contents vs. mineral nitrogen on the yield of maize by means of linear regressions (trends), spatial kriging-interpolated maps, and Bland-Altman statistics. The experiments were conducted in 2013 and 2014 on two soils, i.e. loam silt in Braszowice (Poland) and clay silt loam in Pusté Jakartice (Czech Republic) under a cross-border cooperation project. The organic materials included compost from manure, slurry, and straw (Ag), industrial organic compost from sewage sludge (Ra), animal meal from animal by-products (Mb), and digestate from a biogas fries factory (Dg). The following 3 application rates of each EOM were adjusted according to the reference 100% = 200 kg N ha-1: 50 (50% N from EOM and 50% mineral N), 75 (75% N from EOM and 25% mineral N), and 100 (100% N from EOM). 100% mineral N was applied on control plots. All treatments were carried out in 4 replicates. The linear regressions between the EOM application rates and the maize yield were in general ascending in the Braszowice soil and descending in the more productive Pusté Jakartice soil. The spatial kriging-interpolated maps allowed separating zones of lower and higher yields with EOMs compared to the control. They were attributed in part to the different EOM application rates and soil water contents. The Bland-Altaman statistics showed that addition of 50% of N from EOMs in 2013 caused a decrease and an increase in the maize grain yield in Braszowice and Pusté Jakartice, respectively, whereas the inverse was true with the 75 and 100% EOM additions. In 2014, the yield of maize for silage increased with the increasing EOM application rate in Braszowice and decreased in Pusté Jakartice, but it was smaller on all EOM-amended plots than in the control. As shown by the limits of agreement lines, the maize yields were more even in Pusté Jakartice than Braszowice. These results provide helpful information for selection of the most yield-producing EOM rates depending on the site soil conditions and prevalent weather conditions.


Asunto(s)
Compostaje , Producción de Cultivos , Fertilizantes , Suelo , Zea mays/crecimiento & desarrollo , República Checa , Polonia
8.
Sensors (Basel) ; 19(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394738

RESUMEN

Water resources on Earth become one of the main concerns for society. Therefore, remote sensing methods are still under development in order to improve the picture of the global water cycle. In this context, the microwave bands are the most suitable to study land-water resources. The Soil Moisture and Ocean Salinity (SMOS), satellite mission of the European Space Agency (ESA), is dedicated for studies of the water in soil over land and salinity of oceans. The part of calibration/validation activities in order to improve soil moisture retrieval algorithms over land is done with ground-based passive radiometers. The European Space Agency L-band Microwave Radiometer (ELBARA III) located near the Bubnów wetland in Poland is capable of mapping microwave emissivity at the local scale, due to the azimuthal and vertical movement of the horn antenna. In this paper, we present results of the spatio-temporal mapping of the brightness temperatures on the heterogeneous area of the Bubnów test-site consisting of an area with variable organic matter (OM) content and different type of vegetation. The soil moisture (SM) was retrieved with the L-band microwave emission of the biosphere (L-MEB) model with simplified roughness parametrization (SRP) coupling roughness and optical depth parameters. Estimated soil moisture values were compared with in-situ data from the automatic agrometeorological station. The results show that on the areas with a relatively low OM content (4-6%-cultivated field) there was good agreement between measured and estimated SM values. Further increase in OM content, starting from approximately 6% (meadow wetland), caused an increase in bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE) values and a general drop in correlation coefficient (R). Despite a span of obtained R values, we found that time-averaged estimated SM using the L-MEB SRP approach strongly correlated with OM contents.

9.
Sci Total Environ ; 633: 1579-1590, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29758908

RESUMEN

Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Monitoreo del Ambiente , Suelo/química , Productos Agrícolas/crecimiento & desarrollo , Polonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...