Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Lancet Reg Health West Pac ; 40: 100896, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38116498

RESUMEN

Background: Carbapenem resistant Acinetobacter baumannii (CRAb) is categorised by the World Health Organization (WHO) as a pathogen of critical concern. However, little is known about CRAb transmission within the Oceania region. This study addresses this knowledge gap by using molecular epidemiology to characterise the phylogenetic relationships of CRAb isolated in hospitals in Fiji, Samoa, and other countries within the Oceania region including Australia and New Zealand, and India from South Asia. Methods: In this multicountry cohort study, we analysed clinical isolates of CRAb collected from the Colonial War Memorial Hospital (CWMH) in Fiji from January through December 2019 (n = 64) and Tupua Tamasese Mea'ole Hospital (TTMH) in Samoa from November 2017 through June 2021 (n = 32). All isolates were characterised using mass spectrometry, antimicrobial susceptibility testing, and whole-genome sequencing. For CWMH, data were collected on clinical and demographic characteristics of patients with CRAb, duration of hospital stay, mortality and assessing the appropriateness of meropenem use from the treated patients who had CRAb infections. To provide a broader geographical context, CRAb strains from Fiji and Samoa were compared with CRAb sequences from Australia collected in 2016-2018 (n = 22), New Zealand in 2018-2021 (n = 13), and India in 2019 (n = 58), a country which has close medical links with Fiji. Phylogenetic relationships of all these CRAb isolates were determined using differences in core genome SNPs. Findings: Of CRAb isolates, 49 (77%) of 64 from Fiji and all 32 (100%) from Samoa belonged to CRAb sequence type 2 (ST2). All ST2 isolates from both countries harboured blaOXA-23, blaOXA-66 and ampC-2 genes, mediating resistance to ß-lactam antimicrobials, including cephalosporins and carbapenems. The blaOXA-23 gene was associated with two copies of ISAba1 insertion element, forming the composite transposon Tn2006, on the chromosome. Two distinct clusters (group 1 and group 2) of CRAb ST2 were detected in Fiji. The first group shared common ancestral linkage to all CRAb ST2 collected from Fiji's historic outbreak in 2016/2017, Samoa, Australia and 54% of total New Zealand isolates; they formed a single cluster with a median (range) SNP difference of 13 (0-102). The second group shared common ancestral linkage to 3% of the total CRAb ST2 isolated from India. Fifty eight of the 64 patients with CRAb infections at the CWMH had their first positive CRAb sample collected 72 h or more following admission. Meropenem use was deemed inappropriate in 15 (48%) of the 31 patients that received treatment with meropenem in Fiji. Other strains of CRAb ST1, ST25, ST107, and ST1112 were also detected in Fiji. Interpretation: We identified unrecognised outbreaks of CRAb ST2 in Fiji and Samoa that linked to strains in other parts of Oceania and South Asia. The existence of Tn2006, containing the blaOXA-23 and ISAba1 insertion element, within CRAb ST2 from Fiji and Samoa indicates the potential for high mobility and dissemination. This raises concerns about unmitigated prolonged outbreaks of CRAb ST2 in the two major hospitals in Fiji and Samoa. Given the magnitude of this problem, there is a need to re-evaluate the current strategies used for infection prevention and control, antimicrobial stewardship, and public health measures locally and internationally. Moreover, a collaborative approach to AMR surveillance within the Oceania region with technical, management and budgetary support systems is required to prevent introduction and control transmission of these highly problematic strains within the island nation health systems. Funding: This project was funded by an Otago Global Health Institute seed grant and Maurice Wilkins Centre of Research Excellence (CoREs) grant (SC0000169653, RO0000002300).

2.
JBJS Case Connect ; 13(4)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856622

RESUMEN

CASE: This article reports a case of a 72-year-old man with bilateral total hip joint replacements who suffered cuts to his hands while butchering a wild boar. He presented to the emergency department with fevers and unilateral hip pain. Erysipelothrix rhusiopathiae (E. rhusiopathiae) was isolated on hip aspirate and blood cultures. E. rhusiopathiae is a well-recognized zoonotic infection in humans, particularly in at-risk hosts, most commonly infecting swine. Infection is spread by ingestion or through skin abrasion. CONCLUSION: This illustrates an example of successful operative and perioperative management of prosthetic joint infection secondary to E. rhusiopathiae, particularly microbiological identification, within a multispecialty team of physicians and surgeons.


Asunto(s)
Artritis Infecciosa , Artroplastia de Reemplazo , Infecciones por Erysipelothrix , Erysipelothrix , Masculino , Humanos , Animales , Porcinos , Anciano , Infecciones por Erysipelothrix/microbiología , Artritis Infecciosa/microbiología , Articulación de la Cadera/cirugía
4.
Vaccine ; 41(38): 5535-5544, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37516574

RESUMEN

The ability of a third dose of the Pfizer-BioNTech BNT162b2 SARS-CoV-2 vaccine to stimulate immune responses against subvariants, including Omicron BA.1, has not been assessed in New Zealand populations. Unlike many overseas populations, New Zealanders were largely infection naïve at the time they were boosted. This adult cohort of 298 participants, oversampled for at-risk populations, was composed of 29% Maori and 28% Pacific peoples, with 40% of the population aged 55+. A significant proportion of the cohort was obese and presented with at least one comorbidity. Sera were collected 28 days and 6 months post second vaccination and 28 days post third vaccination. SARS-CoV-2 anti-S IgG titres and neutralising capacity using surrogate viral neutralisation assays against variants of concern, including Omicron BA.1, were investigated. The incidence of SARS-CoV-2 infection, within our cohort, prior to third vaccination was very low (<6%). This study found a third vaccine significantly increased the mean SARS-CoV-2 anti-S IgG titres, for every demographic subgroup, by a minimum of 1.5-fold compared to titres after two doses. Diabetic participants experienced a greater increase (∼4-fold) in antibody titres after their third vaccination, compared to non-diabetics (increase of âˆ¼ 2-fold). This corrected for the deficiency in antibody titres within diabetic participants which was observed following two doses. A third dose also induced a neutralising response against Omicron variant BA.1, which was absent after two doses. This neutralising response improved regardless of age, BMI, ethnicity, or diabetes status. Participants aged ≥75 years consistently had the lowest SARS-CoV-2 anti-S IgG titres at each timepoint, however experienced the greatest improvement after three doses compared to younger participants. This study shows that in the absence of prior SARS-CoV-2 infection, a third Pfizer-BioNTech BNT162b2 vaccine enhances immunogenicity, including against Omicron BA.1, in a cohort representative of at-risk groups in the adult New Zealand population.


Asunto(s)
Vacuna BNT162 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Inmunoglobulina G , Pueblo Maorí , Nueva Zelanda/epidemiología , SARS-CoV-2 , Vacunación , Persona de Mediana Edad , Pueblos Isleños del Pacífico , Inmunogenicidad Vacunal
5.
iScience ; 26(4): 106256, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36845030

RESUMEN

Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.

6.
J Clin Virol ; 159: 105355, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603330

RESUMEN

BACKGROUND: In 2019, Aotearoa New Zealand (NZ) experienced its worst measles outbreak since 1997. Due to declining childhood vaccination rates since the beginning of the SARS-CoV-2 pandemic, NZ is at serious risk of another major measles outbreak. Our laboratory provides diagnostic services to NZ's Southern region. In 2019 the Southern region experienced the greatest number of cases outside of Auckland and Northland, however we did not have a validated measles PCR assay in our laboratory. OBJECTIVES: We sought to develop reverse transcription real-time polymerase chain reaction (RT-PCR) assays for measles on the Hologic Panther Fusion® System by utilising its open access function. STUDY DESIGN: Previously published real-time RT-PCR assays were modified and optimised to detect wild-type measles virus (LDT-Mea), and the vaccine strain of measles virus (LDT-MeaVacA), on the Hologic Panther Fusion® System. The assays were clinically validated. RESULTS: The LDT-Mea assay has a limit of detection (LoD) of 0.1 CCID50, while the LDT-MeaVacA assay is less sensitive with a LoD of 1 CCID50. Using 27 samples, the clinical sensitivity and specificity was 100% for both assays. Other common respiratory viruses were found not to cross-react with either the LDT-Mea or LDT-MeaVacA assays. CONCLUSION: We have successfully adapted and validated for diagnostic use on the Hologic Panther Fusion® System previously published assays to detect wild-type and vaccine strains of the measles virus. The implementation of measles testing on this system will greatly improve the turn-around time for measles testing, and better support the measles public health response, for our region.


Asunto(s)
COVID-19 , Sarampión , Humanos , Virus del Sarampión/genética , SARS-CoV-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Reacción en Cadena en Tiempo Real de la Polimerasa , Sarampión/diagnóstico , Sarampión/epidemiología , Sensibilidad y Especificidad , Prueba de COVID-19
7.
N Z Med J ; 135(1559): 53-58, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35999781

RESUMEN

AIM: To compare detection of SARS-CoV-2 from paired nasopharyngeal swabs (NPS) and saliva using molecular methods in common use for testing swabs in New Zealand. METHOD: Samples from individuals testing positive for SARS-CoV-2 in Auckland, Wellington and Dunedin were tested at the local laboratories using methods previously established for these sample types. RESULTS: One hundred and ninety-six paired samples from unique individuals were tested, with 46 (23%) positive from either sample type, of which 43/46 (93%) tested positive from NPS, and 42/46 (91%) from saliva, indicating no significant difference in performance between sample types (p=0.69). The average Δ Ct between saliva and nasopharyngeal swabs overall across the sample set was 0.22 cycles, indicating excellent concordance; however, the difference between NPS and saliva collected from the same individual was quite variable with up to 19 cycles difference between the sample types. CONCLUSION: We found that saliva is an equivalent sample type to nasopharyngeal swab for the detection of SARS-CoV-2 in our laboratories using multiple assay combinations and is suitable for use as a diagnostic and surveillance test for selected groups of individuals.


Asunto(s)
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico/métodos , Humanos , Nasofaringe , Nueva Zelanda , SARS-CoV-2/genética , Saliva , Manejo de Especímenes/métodos
8.
Vaccine ; 40(34): 5050-5059, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35868948

RESUMEN

BACKGROUND: There is very little known about SARS-CoV-2 vaccine immune responses in New Zealand populations at greatest risk for serious COVID-19 disease. METHODS: This prospective cohort study assessed immunogenicity in BNT162b2 mRNA vaccine recipients in New Zealand without previous COVID-19, with enrichment for Maori, Pacific peoples, older adults ≥ 65 years of age, and those with co-morbidities. Serum samples were analysed at baseline and 28 days after second dose for presence of quantitative anti-S IgG by chemiluminescent microparticle immunoassay and for neutralizing capacity against Wuhan, Beta, Delta, and Omicron BA.1 strains using a surrogate viral neutralisation assay. RESULTS: 285 adults with median age of 52 years were included. 55% were female, 30% were Maori, 28% were Pacific peoples, and 26% were ≥ 65 years of age. Obesity, cardiac and pulmonary disease and diabetes were more common than in the general population. All participants received 2 doses of BNT162b2 vaccine. At 28 days after second vaccination, 99.6% seroconverted to the vaccine, and anti-S IgG and neutralising antibody levels were high across gender and ethnic groups. IgG and neutralising responses declined with age. Lower responses were associated with age ≥ 75 and diabetes, but not BMI. The ability to neutralise the Omicron BA.1 variant in vitro was severely diminished but maintained against other variants of concern. CONCLUSIONS: Vaccine antibody responses to BNT162b2 were generally robust and consistent with international data in this COVID-19 naïve cohort with representation of key populations at risk for COVID-19 morbidity. Subsequent data on response to boosters, durability of responses and cellular immune responses should be assessed with attention to elderly adults and diabetics.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Femenino , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G , Masculino , Persona de Mediana Edad , Nueva Zelanda/epidemiología , Estudios Prospectivos , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
9.
Antibiotics (Basel) ; 11(6)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35740184

RESUMEN

Antimicrobial resistance (AMR) is an increasing global threat that affects human, animal and, often less acknowledged, environmental health. This complex issue requires a multisectoral One Health approach to address the interconnectedness of humans, animals and the natural environment. The prevalence of AMR in these reservoirs varies widely among countries and thus often requires a country-specific approach. In New Zealand (NZ), AMR and antimicrobial usage in humans are relatively well-monitored and -understood, with high human use of antimicrobials and the frequency of resistant pathogens increasing in hospitals and the community. In contrast, on average, NZ is a low user of antimicrobials in animal husbandry systems with low rates of AMR in food-producing animals. AMR in New Zealand's environment is little understood, and the role of the natural environment in AMR transmission is unclear. Here, we aimed to provide a summary of the current knowledge on AMR in NZ, addressing all three components of the One Health triad with a particular focus on environmental AMR. We aimed to identify knowledge gaps to help develop research strategies, especially towards mitigating AMR in the environment, the often-neglected part of the One Health triad.

11.
Viruses ; 14(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215963

RESUMEN

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has wreaked havoc across the globe for the last two years. More than 300 million cases and over 5 million deaths later, we continue battling the first real pandemic of the 21st century. SARS-CoV-2 spread quickly, reaching most countries within the first half of 2020, and New Zealand was not an exception. Here, we describe the first isolation and characterization of SARS-CoV-2 variants during the initial virus outbreak in New Zealand. Patient-derived nasopharyngeal samples were used to inoculate Vero cells and, three to four days later, a cytopathic effect was observed in seven viral cultures. Viral growth kinetics was characterized using Vero and VeroE6/TMPRSS2 cells. The identity of the viruses was verified by RT-qPCR, Western blot, indirect immunofluorescence assays, and electron microscopy. Whole-genome sequences were analyzed using two different yet complementary deep sequencing platforms (MiSeq/Illumina and Ion PGM™/Ion Torrent™), classifying the viruses as SARS-CoV-2 B.55, B.31, B.1, or B.1.369 based on the Pango Lineage nomenclature. All seven SARS-CoV-2 isolates were susceptible to remdesivir (EC50 values from 0.83 to 2.42 µM) and ß-D-N4-hydroxycytidine (molnupiravir, EC50 values from 0.96 to 1.15 µM) but not to favipiravir (>10 µM). Interestingly, four SARS-CoV-2 isolates, carrying the D614G substitution originally associated with increased transmissibility, were more susceptible (2.4-fold) to a commercial monoclonal antibody targeting the spike glycoprotein than the wild-type viruses. Altogether, this seminal work allowed for early access to SARS-CoV-2 isolates in New Zealand, paving the way for numerous clinical and scientific research projects in the country, including the development and validation of diagnostic assays, antiviral strategies, and a national COVID-19 vaccine development program.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Animales , Anticuerpos Monoclonales/farmacología , Antivirales , Chlorocebus aethiops , Estudios de Cohortes , Efecto Citopatogénico Viral , Humanos , Persona de Mediana Edad , Nueva Zelanda/epidemiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Células Vero , Secuenciación Completa del Genoma , Adulto Joven
12.
N Z Med J ; 134(1546): 28-37, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34855731

RESUMEN

AIM: To assess the sensitivity and potential utility of five RATs and the IDNow, Liat and Oxsed nucleic acid amplification tests (NAATs) in our population. METHOD: 39 retrospective and contrived SARS-CoV-2 positive samples were tested in parallel by standard RT-PCR and RAT. A second group of 44 samples was tested by standard RT-PCR, rapid RT-PCR and two isothermal NAAT assays. Limit of detection was compared at RT-PCR cycle thresholds for all assays. RESULTS: We found that the Cobas Liat RT-PCR had 100% concordance with conventional RT-PCR, whereas the sensitivity of other rapid NAAT assays was less at lower viral loads indicated by Cts >30 (p=0.042) and the RATs at Cts >25 (p<0.001). When applied to New Zealand testing scenarios, IDNow or Oxsed NAAT could miss up to 12% and RATs up to 44.3% of COVID-19 cases compared with the RT-PCR currently used at our laboratory. CONCLUSION: We found that the POC Cobas Liat, a platform that delivers a sample answer in 20 minutes, demonstrated equivalent performance to standard RT-PCR. However, the RATs and isothermal NAAT assays demonstrated reduced sensitivity, limiting their utility in New Zealand's currently very low prevalence setting.


Asunto(s)
Prueba Serológica para COVID-19/normas , COVID-19/diagnóstico , Erradicación de la Enfermedad/métodos , Técnicas de Amplificación de Ácido Nucleico/normas , COVID-19/epidemiología , Humanos , Nueva Zelanda/epidemiología
13.
JAC Antimicrob Resist ; 3(4): dlab147, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34778763

RESUMEN

OBJECTIVES: The incidence of infections with ESBL-producing Escherichia coli (ESBL-Ec) in New Zealand is increasing. ESBL-Ec most commonly cause urinary tract infections and are seen in both community and hospitalized patients. The reason for the increasing incidence of ESBL-Ec infections is unknown. METHODS: In this study, 65 urinary ESBL-Ec isolates from the Otago region in 2015 were fully genetically characterized to understand the mechanisms of transmission. The ESBL gene, E. coli STs, plasmid types and genetic context (e.g. insertion sequences) of ESBL genes were determined by a combination of whole genome and plasmid sequencing. The phylogenetic relationships of the isolates were compared with ESBL-Ec isolates sequenced as part of the 2016 nationwide survey. RESULTS: Significant diversity of E. coli strains, plasmids, and the genetic context of ESBL genes was seen. However, there was evidence of common mobile genetic elements in unrelated ESBL-Ec. CONCLUSIONS: Multiple introductions of ESBL resistance genes or resistant bacterial strains with limited horizontal transmission of mobile genetic elements accounts for the increased incidence of ESBL-Ec in this low prevalence area. Future studies should investigate modes of transmission of ESBL-Ec in the Otago region.

14.
Viruses ; 13(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34835031

RESUMEN

It has been 20 months since we first heard of SARS-CoV-2, the novel coronavirus detected in the Hubei province, China, in December 2019, responsible for the ongoing COVID-19 pandemic. Since then, a myriad of studies aimed at understanding and controlling SARS-CoV-2 have been published at a pace that has outshined the original effort to combat HIV during the beginning of the AIDS epidemic. This massive response started by developing strategies to not only diagnose individual SARS-CoV-2 infections but to monitor the transmission, evolution, and global spread of this new virus. We currently have hundreds of commercial diagnostic tests; however, that was not the case in early 2020, when just a handful of protocols were available, and few whole-genome SARS-CoV-2 sequences had been described. It was mid-January 2020 when several District Health Boards across New Zealand started planning the implementation of diagnostic testing for this emerging virus. Here, we describe our experience implementing a molecular test to detect SARS-CoV-2 infection, adapting the RT-qPCR assay to be used in a random-access platform (Hologic Panther Fusion® System) in a clinical laboratory, and characterizing the first whole-genome SARS-CoV-2 sequences obtained in the South Island, right at the beginning of the SARS-CoV-2 outbreak in New Zealand. We expect that this work will help us and others prepare for the unequivocal risk of similar viral outbreaks in the future.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Femenino , Genoma Viral , Humanos , Masculino , Nueva Zelanda/epidemiología , Filogenia , Reproducibilidad de los Resultados , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Secuenciación Completa del Genoma
15.
Viruses ; 13(10)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34696342

RESUMEN

At the end of 2019 a newly emerged betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of severe pneumonia, subsequently termed COVID-19, in a number of patients in Wuhan, China. Subsequently, SARS-CoV-2 rapidly spread globally, resulting in a pandemic that has to date infected over 200 million individuals and resulted in more than 4.3 million deaths. While SARS-CoV-2 results in severe disease in 13.8%, with increasing frequency of severe disease with age, over 80% of infections are asymptomatic or mild. The immune response is an important determinant of outcome following SARS-CoV-2 infection. While B cell and T cell responses are associated with control of infection and protection against subsequent challenge with SARS-CoV-2, failure to control viral replication and the resulting hyperinflammation are associated with severe COVID-19. Towards the end of 2020, several variants of concern emerged that demonstrate increased transmissibility and/or evasion of immune responses from prior SARS-CoV-2 infection. This article reviews what is known about the humoral and cellular immune responses to SARS-CoV-2 and how mutation and structural/functional changes in the emerging variants of concern impact upon the immune protection from prior infection or vaccination.


Asunto(s)
COVID-19/inmunología , Inmunidad/inmunología , SARS-CoV-2/inmunología , Humanos , Pandemias/prevención & control
16.
Pathology ; 53(5): 645-651, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34119335

RESUMEN

During New Zealand's first outbreak in early 2020 the Southern Region had the highest per capita SARS-CoV-2 infection rate. Polymerase chain reaction (PCR) testing was initially limited by a narrow case definition and limited laboratory capacity, and cases may have been missed. Our objectives were to evaluate the Abbott SARS-CoV-2 IgG nucleocapsid assay, alongside spike-based assays, and to determine the frequency of antibodies among PCR-confirmed and probable cases, and higher risk individuals in the Southern Region of New Zealand. Pre-pandemic sera (n=300) were used to establish assay specificity and sera from PCR-confirmed SARS-CoV-2 patients (n=78) to establish sensitivity. For prevalence analysis, all samples (n=1214) were tested on the Abbott assay, and all PCR-confirmed cases (n=78), probable cases (n=9), and higher risk individuals with 'grey-zone' (n=14) or positive results (n=11) were tested on four additional SARS-CoV-2 serological assays. The median time from infection onset to serum collection for PCR-confirmed cases was 14 weeks (range 11-17 weeks). The Abbott assay demonstrated a specificity of 99.7% (95% CI 98.2-99.99%) and a sensitivity of 76.9% (95% CI 66.0-85.7%). Spike-based assays demonstrated superior sensitivity ranging 89.7-94.9%. Nine previously undiagnosed sero-positive individuals were identified, and all had epidemiological risk factors. Spike-based assays demonstrated higher sensitivity than the Abbott IgG assay, likely due to temporal differences in antibody persistence. No unexpected SARS-CoV-2 infections were found in the Southern Region of New Zealand, supporting the elimination status of the country at the time this study was conducted.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Pruebas Serológicas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Proteínas de la Nucleocápside de Coronavirus/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Nueva Zelanda , Fosfoproteínas/inmunología , Sensibilidad y Especificidad , Adulto Joven
17.
Clin Transl Immunology ; 10(3): e1261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747511

RESUMEN

OBJECTIVES: Circulating antibodies are important markers of previous infection and immunity. Questions remain with respect to the durability and functionality of SARS-CoV-2 antibodies. This study explored antibody responses in recovered COVID-19 patients in a setting where the probability of re-exposure is effectively nil, owing to New Zealand's successful elimination strategy. METHODS: A triplex bead-based assay that detects antibody isotype (IgG, IgM and IgA) and subclass (IgG1, IgG2, IgG3 and IgG4) responses against Nucleocapsid (N) protein, the receptor binding domain (RBD) and Spike (S) protein of SARS-CoV-2 was developed. After establishing baseline levels with pre-pandemic control sera (n = 113), samples from PCR-confirmed COVID-19 patients with mild-moderate disease (n = 189) collected up to 8 months post-infection were examined. The relationship between antigen-specific antibodies and neutralising antibodies (NAbs) was explored with a surrogate neutralisation assay that quantifies inhibition of the RBD/hACE-2 interaction. RESULTS: While most individuals had broad isotype and subclass responses to each antigen shortly after infection, only RBD and S protein IgG, as well as NAbs, were relatively stable over the study period, with 99%, 96% and 90% of samples, respectively, having responses over baseline 4-8 months post-infection. Anti-RBD antibodies were strongly correlated with NAbs at all time points (Pearson's r ≥ 0.87), and feasibility of using finger prick sampling to accurately measure anti-RBD IgG was demonstrated. CONCLUSION: Antibodies to SARS-CoV-2 persist for up to 8 months following mild-to-moderate infection. This robust response can be attributed to the initial exposure without immune boosting given the lack of community transmission in our setting.

19.
Nat Microbiol ; 6(2): 162-172, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398095

RESUMEN

Bacteria harbour multiple innate defences and adaptive CRISPR-Cas systems that provide immunity against bacteriophages and mobile genetic elements. Although some bacteria modulate defences in response to population density, stress and metabolic state, a lack of high-throughput methods to systematically reveal regulators has hampered efforts to understand when and how immune strategies are deployed. We developed a robust approach called SorTn-seq, which combines saturation transposon mutagenesis, fluorescence-activated cell sorting and deep sequencing to characterize regulatory networks controlling CRISPR-Cas immunity in Serratia sp. ATCC 39006. We applied our technology to assess csm gene expression for ~300,000 mutants and uncovered multiple pathways regulating type III-A CRISPR-Cas expression. Mutation of igaA or mdoG activated the Rcs outer-membrane stress response, eliciting cell-surface-based innate immunity against diverse phages via the transcriptional regulators RcsB and RcsA. Activation of this Rcs phosphorelay concomitantly attenuated adaptive immunity by three distinct type I and III CRISPR-Cas systems. Rcs-mediated repression of CRISPR-Cas defence enabled increased acquisition and retention of plasmids. Dual downregulation of cell-surface receptors and adaptive immunity in response to stress by the Rcs pathway enables protection from phage infection without preventing the uptake of plasmids that may harbour beneficial traits.


Asunto(s)
Proteínas Bacterianas/fisiología , Bacteriófagos/fisiología , Sistemas CRISPR-Cas/fisiología , Serratia/fisiología , Serratia/virología , Proteínas Bacterianas/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Citometría de Flujo , Regulación Bacteriana de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis , Plásmidos/genética , Plásmidos/fisiología , Estrés Fisiológico/genética
20.
Front Public Health ; 9: 808751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35141190

RESUMEN

The rapid global rise of COVID-19 from late 2019 caught major manufacturers of RT-qPCR reagents by surprise and threw into sharp focus the heavy reliance of molecular diagnostic providers on a handful of reagent suppliers. In addition, lockdown and transport bans, necessarily imposed to contain disease spread, put pressure on global supply lines with freight volumes severely restricted. These issues were acutely felt in New Zealand, an island nation located at the end of most supply lines. This led New Zealand scientists to pose the hypothetical question: in a doomsday scenario where access to COVID-19 RT-qPCR reagents became unavailable, would New Zealand possess the expertise and infrastructure to make its own reagents onshore? In this work we describe a review of New Zealand's COVID-19 test requirements, bring together local experts and resources to make all reagents for the RT-qPCR process, and create a COVID-19 diagnostic assay referred to as HomeBrew (HB) RT-qPCR from onshore synthesized components. This one-step RT-qPCR assay was evaluated using clinical samples and shown to be comparable to a commercial COVID-19 assay. Through this work we show New Zealand has both the expertise and, with sufficient lead time and forward planning, infrastructure capacity to meet reagent supply challenges if they were ever to emerge.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , Humanos , Indicadores y Reactivos/provisión & distribución , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...