Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24437342

RESUMEN

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Asunto(s)
Aminoácidos/química , Inmunoconjugados/química , Línea Celular , Sistema Libre de Células , Cromatografía Liquida , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunoconjugados/farmacología , Espectrometría de Masas en Tándem
2.
J Biol Chem ; 287(52): 43910-26, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23105106

RESUMEN

The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic "leucine collar" that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/química , ATPasas de Translocación de Protón Vacuolares/química , ATPasas Asociadas con Actividades Celulares Diversas , Secuencias de Aminoácidos , Animales , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Ratones , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Conejos , Relación Estructura-Actividad , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
3.
Nat Struct Mol Biol ; 16(7): 754-62, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19525971

RESUMEN

Endosomal sorting complexes required for transport-III (ESCRT-III) subunits cycle between two states: soluble monomers and higher-order assemblies that bind and remodel membranes during endosomal vesicle formation, midbody abscission and enveloped virus budding. Here we show that the N-terminal core domains of increased sodium tolerance-1 (IST1) and charged multivesicular body protein-3 (CHMP3) form equivalent four-helix bundles, revealing that IST1 is a previously unrecognized ESCRT-III family member. IST1 and its ESCRT-III binding partner, CHMP1B, both form higher-order helical structures in vitro, and IST1-CHMP1 interactions are required for abscission. The IST1 and CHMP3 structures also reveal that equivalent downstream alpha5 helices can fold back against the core domains. Mutations within the CHMP3 core-alpha5 interface stimulate the protein's in vitro assembly and HIV-inhibition activities, indicating that dissociation of the autoinhibitory alpha5 helix from the core activates ESCRT-III proteins for assembly at membranes.


Asunto(s)
Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Conformación Proteica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Cristalografía por Rayos X , Citocinesis/fisiología , Dimerización , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Oncogénicas/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/genética
4.
Biochemistry ; 45(22): 6858-65, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16734422

RESUMEN

Structure-based mutational analysis was employed to probe an unusual intramolecular interaction between partially buried glutamate residues adjacent to the active site of Escherichia coli glutaminyl-tRNA synthetase (GlnRS). The crystal structures of unliganded GlnRS and the GlnRS-tRNA(Gln) complex reveal that the Glu34 and Glu73 side chain carboxylates contact each other only in the tRNA-bound state and that the interaction is formed via mutual induced-fit transitions that occur en route to the ground-state Michaelis complex. Steady-state and transient kinetic analysis of mutant enzymes suggest that the formation of this intermolecular contact is a key event that facilitates the proper formation of the active site. Mutants at both positions destabilize the binding of the substrate glutamine at the opposite side of the active-site cleft, whereas Glu73 appears to play an additional important role by promoting the correct binding of the 3'-acceptor end of tRNA adjacent to both ATP and glutamine. The data suggest the existence of multiple structural pathways by which the binding of tRNA propagates conformational transitions leading to the proper formation of the glutamine binding site. The single-turnover kinetic analysis also establishes that the Glu34 carboxylate does not play a direct enzymatic role as a catalytic base to help deprotonate the tRNA-A76 nucleophilic 2'-hydroxyl group. The elimination of this previously proposed mechanism, together with recent chemical modification experiments in the histidyl-tRNA synthetase system, emphasizes that substrate-assisted catalysis by the phosphate of the aminoacyl adenylate may be a common means by which all tRNA synthetases facilitate the aminoacyl transfer step of the reaction.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Escherichia coli/enzimología , Glutamina , ARN de Transferencia de Glutamina/química , Aminoacilación de ARN de Transferencia , Aminoacil-ARNt Sintetasas/genética , Sitios de Unión/genética , Cristalografía , Análisis Mutacional de ADN , Ácido Glutámico/química , Ácido Glutámico/genética , Glutamina/química , Conformación Proteica
5.
J Biol Chem ; 280(25): 23966-77, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15845537

RESUMEN

Steady-state and transient kinetic analyses of glutaminyl-tRNA synthetase (GlnRS) reveal that the enzyme discriminates against noncognate glutamate at multiple steps during the overall aminoacylation reaction. A major portion of the selectivity arises in the amino acid activation portion of the reaction, whereas the discrimination in the overall two-step reaction arises from very weak binding of noncognate glutamate. Further transient kinetics experiments showed that tRNA(Gln) binds to GlnRS approximately 60-fold weaker when noncognate glutamate is present and that glutamate reduces the association rate of tRNA with the enzyme by 100-fold. These findings demonstrate that amino acid and tRNA binding are interdependent and reveal an important additional source of specificity in the aminoacylation reaction. Crystal structures of the GlnRS x tRNA complex bound to either amino acid have previously shown that glutamine and glutamate bind in distinct positions in the active site, providing a structural basis for the amino acid-dependent modulation of tRNA affinity. Together with other crystallographic data showing that ligand binding is essential to assembly of the GlnRS active site, these findings suggest a model for specificity generation in which required induced-fit rearrangements are significantly modulated by the identities of the bound substrates.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/química , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/enzimología , Cinética , Modelos Moleculares , Unión Proteica
6.
Proc Natl Acad Sci U S A ; 101(40): 14396-401, 2004 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-15452355

RESUMEN

Pre-steady-state kinetic studies of Escherichia coli glutaminyl-tRNA synthetase conclusively demonstrate the existence of long-distance pathways of communication through the protein-RNA complex. Measurements of aminoacyl-tRNA synthesis reveal a rapid burst of product formation followed by a slower linear increase corresponding to k(cat). Thus, a step after chemistry but before regeneration of active enzyme is rate-limiting for synthesis of Gln-tRNA(Gln). Single-turnover kinetics validates these observations, confirming that the rate of the chemical step for tRNA aminoacylation (k(chem)) exceeds the steady-state rate by nearly 10-fold. The concentration dependence of the single-turnover reaction further reveals that the glutamine K(d) is significantly higher than the steady-state K(m) value. The separation of binding from catalytic events by transient kinetics now allows precise interpretation of how alterations in tRNA structure affect the aminoacylation reaction. Mutation of U35 in the tRNA anticodon loop decreases k(chem) by 30-fold and weakens glutamine binding affinity by 20-fold, demonstrating that the active-site configuration depends on enzyme-tRNA contacts some 40 A distant. By contrast, mutation of the adjacent G36 has very small effects on k(chem) and K(d) for glutamine. Together with x-ray crystallographic data, these findings allow a comparative evaluation of alternative long-range signaling pathways and lay the groundwork for systematic exploration of how induced-fit conformational transitions may control substrate selection in this model enzyme-RNA complex.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/genética , Anticodón/genética , Anticodón/metabolismo , Dominio Catalítico , Escherichia coli/enzimología , Escherichia coli/genética , Glutamina/metabolismo , Cinética , Sustancias Macromoleculares , Modelos Moleculares , Mutagénesis Sitio-Dirigida , ARN Bacteriano/biosíntesis , Aminoacil-ARN de Transferencia/biosíntesis , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...