Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376161

RESUMEN

The use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consideration owing to their exceptional physical and chemical features. However, due to the limitations, such as specificity and toxicity towards healthy cells, their application in clinical translations has been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors overexpressed on cancer cells. The HA-modified M-NPs have demonstrated promising results in improving specificity and efficacy in cancer therapy. This review discusses the significance of nanotechnology, the state of cancers, and the functions of HA-modified M-NPs, and other substituents in cancer therapy applications. Additionally, the role of various types of selected noble and non-noble M-NPs used in cancer therapy are described, along with the mechanisms involved in cancer targeting. Additionally, the purpose of HA, its sources and production processes, as well as its chemical and biological properties are described. In-depth explanations are provided about the contemporary applications of HA-modified noble and non-noble M-NPs and other substituents in cancer therapy. Furthermore, potential obstacles in optimizing HA-modified M-NPs, in terms of clinical translations, are discussed, followed by a conclusion and future prospects.

2.
Gels ; 9(5)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37232946

RESUMEN

This study aimed to develop hydrogels for tissue adhesion that are biocompatible, antioxidant, and antibacterial. We achieved this by using tannic acid (TA) and fungal-derived carboxymethyl chitosan (FCMCS) incorporated in a polyacrylamide (PAM) network using free-radical polymerization. The concentration of TA greatly influenced the physicochemical and biological properties of the hydrogels. Scanning electron microscopy showed that the nanoporous structure of the FCMCS hydrogel was retained with the addition of TA, resulting in a nanoporous surface structure. Equilibrium-swelling experiments revealed that increasing the concentration of TA significantly improved water uptake capacity. Antioxidant radical-scavenging assays and porcine skin adhesion tests confirmed the excellent adhesive properties of the hydrogels, with adhesion strengths of up to 39.8 ± 1.2 kPa for 1.0TA-FCMCS due to the presence of abundant phenolic groups on TA. The hydrogels were also found to be biocompatible with skin fibroblast cells. Furthermore, the presence of TA significantly enhanced the antibacterial properties of the hydrogels against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Therefore, the developed drug-free antibacterial and tissue-adhesive hydrogels can potentially be used as wound dressings for infected wounds.

3.
Int J Biol Macromol ; 240: 124336, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030466

RESUMEN

In this study, a simple approach was used for the synthesis of a water-soluble hyaluronic acid-quercetin (HA-Q) pendant drug conjugate to evaluate its potential wound-healing properties. The HA-Q conjugation was confirmed by Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectrophotometry (UV-Vis), and nuclear magnetic resonance (NMR) spectroscopy techniques. To produce the HA-Q, quercetin was conjugated on the HA backbone to the extent of 44.7 %. The HA-Q conjugate was soluble in water and a solution with a concentration of 20 mg/ml was prepared. The conjugate exhibited good biocompatibility and supported the growth and cell migration of skin fibroblast cells. HA-Q presented improved radical scavenging capacity compared to quercetin (Q) alone. The overall results confirmed the potential role of HA-Q in wound healing applications.


Asunto(s)
Ácido Hialurónico , Quercetina , Ácido Hialurónico/química , Quercetina/farmacología , Quercetina/química , Cicatrización de Heridas , Antioxidantes/química , Agua
4.
Gels ; 9(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36661804

RESUMEN

This study examined the gel behavior of naturally-occurring palmyra palm kernel (PPK). Due to the presence of polysaccharide in PPK hydrogels, they exhibit excellent swelling behavior in response to pH. Chemotherapeutic drug 5-fluorouracil (5-FU) was encapsulated in these gels using an equilibrium swelling technique. It was found that 5-FU had an encapsulation efficiency of up to 62%. To demonstrate the drug stability in the gels, the PPK hydrogels were characterized using fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The results showed that the PPK hydrogel matrix contained molecularly dispersed 5-FU drug. The PPK hydrogel exhibited a denser structure and a rough surface, according to images obtained by scanning electron microscopy. In vitro release tests were carried out at pH 1.2 (gastric fluid) and 7.4 (intestinal fluid). The efficacy of the encapsulation and the release patterns were influenced by the network topology of the PPK hydrogel. The release patterns showed that 5-FU was released gradually over a time internal of more than 12 h. The findings suggest that naturally-occurring PPK hydrogels loaded with chemotherapeutic drugs could be employed to treat colon cancer.

5.
Gels ; 8(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36547359

RESUMEN

Over the past few decades, hydrogel systems using natural polymers have been expansively employed in drug delivery applications. Among the various reported biopolymer-based hydrogel drug delivery systems, pectin (Pec) is an exceptional natural polymer due to its unique functionalities and excellent properties such as biocompatibility, biodegradability, low-cost, and simple gelling capability, which has received considerable interest in the drug delivery fields. Since there is an increasing need for biomaterials with unique properties for drug delivery applications, in this review, hydrogels fabricated from natural pectin polymers were thoroughly investigated. Additionally, the present mini review aims to bring collectively more concise ways such as sources, extraction, properties, and various forms of Pec based hydrogel drug delivery systems and their toxicity concerns are summarized. Finally, the potential objectives and challenges based on pectin-based hydrogel drug delivery systems are also discussed.

6.
Pharmaceutics ; 14(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631614

RESUMEN

In this work, fungal mushroom-derived carboxymethyl chitosan-polydopamine hydrogels (FCMCS-PDA) with multifunctionality (tissue adhesive, hemostasis, self-healing, and antibacterial properties) were developed for wound dressing applications. The hydrogel is obtained through dynamic Schiff base cross-linking and hydrogen bonds between FCMCS-PDA and covalently cross-linked polyacrylamide (PAM) networks. The FCMCS-PDA-PAM hydrogels have a good swelling ratio, biodegradable properties, excellent mechanical properties, and a highly interconnected porous structure with PDA microfibrils. Interestingly, the PDA microfibrils were formed along with FCMCS fibers in the hydrogel networks, which has a high impact on the biological performance of hydrogels. The maximum adhesion strength of the hydrogel to porcine skin was achieved at about 29.6 ± 2.9 kPa. The hydrogel had good self-healing and recoverable properties. The PDA-containing hydrogels show good antibacterial properties on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. Moreover, the adhesive hydrogels depicted good viability and attachment of skin fibroblasts and keratinocyte cells. Importantly, FCMCS and PDA combined resulted in fast blood coagulation within 60 s. Hence, the adhesive hydrogel with multifunctionality has excellent potential as a wound dressing material for infected wounds.

7.
Biosensors (Basel) ; 12(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35448280

RESUMEN

CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...