Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(23): 5353-5359, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37267598

RESUMEN

We measure the quantum efficiency (QE) of individual dibenzoterrylene (DBT) molecules embedded in p-dichlorobenzene at cryogenic temperatures. To achieve this, we combine two distinct methods based on the maximal photon emission and on the power required to saturate the zero-phonon line to compensate for uncertainties in some key system parameters. We find that the outcomes of the two approaches are in good agreement for reasonable values of the parameters involved, reporting a large fraction of molecules with QE values above 50%, with some exceeding 70%. Furthermore, we observe no correlation between the observed lower bound on the QE and the lifetime of the molecule, suggesting that most of the molecules have a QE exceeding the established lower bound. This confirms the suitability of DBT for quantum optics experiments. In light of previous reports of low QE values at ambient conditions, our results hint at the possibility of a strong temperature dependence of the QE.

2.
J Chem Phys ; 156(10): 104301, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35291792

RESUMEN

Vibrational levels of the electronic ground states in dye molecules have not been previously explored at a high resolution in solid matrices. We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene. To do this, we use narrow-band continuous-wave lasers and combine spectroscopy methods based on fluorescence excitation and stimulated emission depletion to assess individual vibrational linewidths in the electronic ground state at a resolution of ∼30 MHz dictated by the linewidth of the electronic excited state. In this fashion, we identify several exceptionally narrow vibronic levels with linewidths down to values around 2 GHz. Additionally, we sample the distribution of vibronic wavenumbers, relaxation rates, and Franck-Condon factors, in both the electronic ground and excited states for a handful of individual molecules. We discuss various noteworthy experimental findings and compare them with the outcome of density functional theory calculations. The highly detailed vibronic spectra obtained in our work pave the way for studying the nanoscopic local environment of single molecules. The approach also provides an improved understanding of the vibrational relaxation mechanisms in the electronic ground state, which may help create long-lived vibrational states for applications in quantum technology.

3.
Phys Rev Lett ; 127(13): 133603, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623836

RESUMEN

A single quantum emitter can possess a very strong intrinsic nonlinearity, but its overall promise for nonlinear effects is hampered by the challenge of efficient coupling to incident photons. Common nonlinear optical materials, on the other hand, are easy to couple to but are bulky, imposing a severe limitation on the miniaturization of photonic systems. In this Letter, we show that a single organic molecule acts as an extremely efficient nonlinear optical element in the strong coupling regime of cavity quantum electrodynamics. We report on single-photon sensitivity in nonlinear signal generation and all-optical switching. Our work promotes the use of molecules for applications such as integrated photonic circuits operating at very low powers.

4.
Phys Rev Lett ; 126(13): 133602, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861100

RESUMEN

We present efficient evanescent coupling of single organic molecules to a gallium phosphide (GaP) subwavelength waveguide (nanoguide) decorated with microelectrodes. By monitoring their Stark shifts, we reveal that the coupled molecules experience fluctuating electric fields. We analyze the spectral dynamics of different molecules over a large range of optical powers in the nanoguide to show that these fluctuations are light-induced and local. A simple model is developed to explain our observations based on the optical activation of charges at an estimated mean density of 2.5×10^{22} m^{-3} in the GaP nanostructure. Our work showcases the potential of organic molecules as nanoscopic sensors of the electric charge as well as the use of GaP nanostructures for integrated quantum photonics.

5.
Phys Rev Lett ; 125(10): 103603, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955324

RESUMEN

Extinction of light by material particles stems from losses incurred by absorption or scattering. The extinction cross section is usually treated as an additive quantity, leading to the exponential laws that govern the macroscopic attenuation of light. In this Letter, we demonstrate that the extinction cross section of a large gold nanoparticle can be substantially reduced-i.e., the particle becomes more transparent-if a single molecule is placed in its near field. This partial cloaking effect results from a coherent plasmonic interaction between the molecule and the nanoparticle, whereby each of them acts as a nanoantenna to modify the radiative properties of the other.

6.
Nano Lett ; 17(8): 4941-4945, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28671833

RESUMEN

The feasibility of many proposals in nanoquantum-optics depends on the efficient coupling of photons to individual quantum emitters, the possibility to control this interaction on demand, and the scalability of the experimental platform. To address these issues, we report on chip-based systems made of one-dimensional subwavelength dielectric waveguides (nanoguides) and polycyclic aromatic hydrocarbon molecules. We discuss the design and fabrication requirements, present data on extinction spectroscopy of single molecules coupled to a nanoguide mode, and show how an external optical beam can switch the propagation of light via a nonlinear optical process. The presented architecture paves the way for the investigation of many-body phenomena and polaritonic states and can be readily extended to more complex geometries for the realization of quantum integrated photonic circuits.

7.
Phys Chem Chem Phys ; 18(29): 19588-94, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27327379

RESUMEN

We perform high-resolution spectroscopy and localization microscopy to study single dye molecules confined to nanoscopic dimensions in one direction. We provide the fabrication details of our nanoscopic glass channels and the procedure for filling them with organic matrices. Optical data on hundreds of molecules in different channel depths show a clear trend from narrow stable lines in deep channels to broader linewidths in ultrathin matrices. In addition, we observe a steady blue shift of the center of the inhomogeneous band as the channels become thinner. Furthermore, we use super-resolution localization microscopy to correlate the positions and orientations of the individual dye molecules with the lateral landscape of the organic matrix, including cracks and strain-induced dislocations. Our results and methodology are useful for a number of studies in various fields such as physical chemistry, solid-state spectroscopy, and quantum nano-optics.

8.
Nano Lett ; 12(7): 3778-82, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22686215

RESUMEN

Plasmonic dimer nanoantennas are characterized by a strong enhancement of the optical field, leading to large nonlinear effects. The third harmonic emission spectrum thus depends strongly on the antenna shape and size as well as on its gap size. Despite the complex shape of the nanostructure, we find that for a large range of different geometries the nonlinear spectral properties are fully determined by the linear response of the antenna. We find excellent agreement between the measured spectra and predictions from a simple nonlinear oscillator model. We extract the oscillator parameters from the linear spectrum and use the amplitude of the nonlinear perturbation only as scaling parameter of the third harmonic spectra. Deviations from the model only occur for gap sizes below 20 nm, indicating that only for these small distances the antenna hot spot contributes noticeable to the third harmonic generation. Because of its simplicity and intuitiveness, our model allows for the rational design of efficient plasmonic nonlinear light sources and is thus crucial for the design of future plasmonic devices that give substantial enhancement of nonlinear processes such as higher harmonics generation as well as difference frequency mixing for plasmonically enhanced terahertz generation.

9.
Phys Rev Lett ; 106(13): 133901, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21517383

RESUMEN

Plasmonic systems are known for their distinct nonlinear optical properties when compared to purely dielectric materials. Although it is well accepted that the enhanced nonlinear processes in plasmonic-dielectric compounds are related to the excitation of localized plasmon resonances, their exact origin is concealed by the local field enhancement in the surrounding material and the nonlinearity in the metal. Here, we show that the origin of third-harmonic generation in hybrid plasmonic-dielectric compounds can be unambiguously identified from the shape of the nonlinear spectrum.

10.
Nano Lett ; 11(3): 1379-82, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21322607

RESUMEN

We investigate the role of electron-hole correlations in the absorption of free-standing monolayer and bilayer graphene using optical transmission spectroscopy from 1.5 to 5.5 eV. Line shape analysis demonstrates that the ultraviolet region is dominated by an asymmetric Fano resonance. We attribute this to an excitonic resonance that forms near the van Hove singularity at the saddle point of the band structure and couples to the Dirac continuum. The Fano model quantitatively describes the experimental data all the way down to the infrared. In contrast, the common noninteracting particle picture cannot describe our data. These results suggest a profound connection between the absorption properties and the topology of the graphene band structure.

11.
Phys Rev Lett ; 104(11): 113903, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20366478

RESUMEN

We demonstrate complete all-optical and phase-stable control of the linear optical polarization and the nonlinear coherent response (third-harmonic generation) of a hybrid nanoplasmonic-photonic system. A few tens of femtoseconds after the excitation, we turn the response on and off at any given point in time and probe its temporal evolution throughout the control process with a three-pulse nonlinear optical technique. After being switched off, the polarization and the nonlinear radiation remain off permanently. All experiments agree well with numerical simulations based on a damped harmonic oscillator model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...