Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 7(7): e07544, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34345733

RESUMEN

The geometry, frontier molecular orbitals (FMOs), vibrational, NBO analysis, and molecular docking simulations of aflatoxins (B1, B2, M1, M2, G1, G2), zearalenone (ZEA) emodin (EMO), alternariol (AOH), alternariol monoethyl ether (AMME), and tenuazonic acid (TeA) mycotoxins have been extensively theoretically studied and discussed based on quantum density functional theory calculations using Gaussian 16 software package. The theoretical computation for the geometry optimization, NBOs, and the molecular docking interaction was conducted using Density Functional Theory with B3LYP/6-31+G(d,p), NBO program, and AutoDock Vina tools respectively. Charge delocalization patterns and second-order perturbation energies of the most interacting natural bond orbitals (NBOs) of these mycotoxins have also been computed and predicted. Interestingly, among the mycotoxins investigated, aflatoxin G1 is seen to give the strongest stabilization energy while Zearalenone shows the highest tendency to accept electron(s) and emodin, an emerging mycotoxin gave the best binding pose within the androgen receptor pocket with a mean binding affinity of -7.40 kcal/mol.

2.
Heliyon ; 7(7): e07531, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34296019

RESUMEN

The inter-fragment interactions at various binding sites and the overall cluster stability of quinolone (QNOL), cinnoline (CNOL), quinazoline (QNAZ), and quinoxaline (QNOX) complexes with H2O were studied using the density functional theory (DFT) approach. The adsorption and H-bond binding energies, and the energy decomposition mechanism was considered to determine the relative stabilization status of the studied clusters. Scanning tunneling microscopy (STM), natural bonding orbitals (NBO) and charge decomposition were studied to expose the electronic distribution and interaction between fragments. The feasibility of formations of the various complexes were also studied by considering their thermodynamic properties. Results from adsorption studies confirmed the actual adsorption of H2O molecules on the various binding sites studied, with QNOX clusters exhibiting the best adsorptions. Charge decomposition analysis (CDA) revealed significant charge transfer from substrate to H2O fragment in most complexes, except in QNOL, CNOL and QNAZ clusters with H2O at binding position 4, where much charges are back-donated to substrate. The O---H inter-fragment bonds was discovered to be stronger than counterpart N---H bonds in the complexes, whilst polarity indices confirmed N---H as more polar covalent than O---H bonds. Thermodynamic considerations revealed that the formation process of all studied complexes are endothermic (+ve ΔH f ) and non-spontaneous (+ve ΔG f ).

3.
Heliyon ; 6(12): e05783, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33385089

RESUMEN

This study explains the vibration and interaction of p-xylene and effect of three elements (fluorine, chlorine and bromine) of the halogen family substitution on it. Basic chemistry of four, compounds p-xylene (PX); 3,6-diflouro-p-xylene (DFPX); 3,6-dichloro-p-xylene (DCPX) and 3,6-dibromo-p-xylene (DBPX) has been explained extensively using theoretical approach. Vibrational energy distribution analysis (VEDA) software was used to study the potential energy distribution (PED) analysis, bond length, bond angles and dihedral angles of PX, DFPX, DCPX, DBPX after optimization with GAUSSIAN 09 software. The trend in chemical reactivity and stability of the studied compounds was observed to show increasing stability and decreasing reactivity moving from DBPX, DCPX, DFPX to PX and this was obtained from the calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) values. Our results show that PX is the best electron donor (best nucleophile) while DBPX is the best electron acceptor (the best electrophile). We also observed that the substituted halogen increases the value of the bond angles but the effect is reduced as the size of the halogen increases. The maximum intensity and the frequency value for the maximum intensity of the different compounds was determined using the VEDA 04 software. From our natural bond orbital (NBO) 7.0 program analysis, the studied compounds are said to show biological activities as well as the intramolecular hyperconjugative interactions responsible for stabilizing the compounds. The NBO results also revealed that the non-bonding interaction existing between the lone pair electron on the halogen atoms and the aromatic ring increases the stability of the halogen substituted para-xylene molecules. Multiwfn: A Multifunctional Wavefunction Analyzer was used for the spectroscopic plots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...